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Generalizations of Arakawa’s Jacobian 
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A simple method yields discrete Jacobians that obey analogues of the differential properties 
needed to conserve energy and enstrophy in 2-dimensional flow. The method is actually 
independent of the type of discretization and thus applies to an arbitrary representation in 
gridpoints, finite elements, or spectral modes, or to any mixture of the three. We illustrate the 
method by deriving simple energy- and enstrophy-conserving Jacobians for an irregular 
triangular mesh in a closed domain, and for a mixed gridpoint-and-mode representation in a 
semi-infinite channel. 0 1989 Academic Press. Inc. 

1. INTRODUCTION 

The motion of a 2-dimensional, inviscid incompressible fluid in a simply- 
connected region 9 of the xy-plane bounded by curve r, is governed by 

arm = J(C, JI) within 9 and on r, (1.1) 

and the boundary condition 

I)=0 on IY (l-2) 

Here, I(I is the streamfunction of the flow, 

[=V’rc/ (l-3) 

is the vorticity, and 

J(A, B) = aA/ax aB/ay - aqax adlay (l-4) 

is the Jacobian operator, defined for any two functions A(x, y) and B(x, y). If 
either A or B is zero on r, then 

j-j- dx AJ(A, B) = = JJ dx BJ(A, B) = 0 (1.5) 

and 

s I dx J( A, B) = 0, (1.6) 
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where the integration is over 9. It follows easily from the properties (1.5) and (1.6) 
that the motion governed by (l.lk(1.3) conserves the energy 

the enstrophy 

4 dx(*, 
Is (1.8) 

and the mean vorticity 

II dx 5. (1.9) 

Arakawa [l] discovered a finite-difference analogue of the Jacobian operator 
(1.4) that obeys finite-difference analogues of (1.5)-(1.6). Because of these proper- 
ties, numerical solutions of (1.1) using Arakawa’s Jacobian conserve difference 
analogues of (1.7)-(1.9). (Here, and throughout this paper, we disregard errors 
resulting from difference approximations to time derivatives. Experience shows that 
these errors can always be reduced to acceptable levels.) 

The conservation of energy and enstrophy guarantees numerical stability and 
prevents the spurious transfer of large amounts of energy to small lengthscales of 
the fluid motion. This spurious transfer is a characteristic property of numerical 
models that do not conserve enstrophy. Arakawa’s Jacobian has been widely used 
for the numerical solution of (1.1) and of other, more general equations governing 
fluid motion. 

Fix [2] derived an entire class of finite-element Jacobians with properties 
analogous to (1.5b(1.6). Jespersen [3] showed that Arakawa’s Jacobian is also a 
member of this class. 

In this paper, we derive an even more general class of discrete Jacobian operators 
that obey analogues of (1.5). Our method, outlined in Section 2, is very simple, and 
is actually independent of the exact method of discretization. It therefore applies to 
an arbitrary representation in terms of gridpoints, finite elements, or spectral 
modes, or to any mixture of the three. We illustrate our method in Section 3 by 
deriving a simple energy- and enstrophy-conserving Jacobian for an irregular 
triangular mesh in a closed domain and for a mixed gridpoint-and-mode represen- 
tation in a semi-infinite channel. 

2. METHOD 

The general equation 

Jr’-cw, y, t)l = 0 in 9 (2.1) 
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(where JV is any operator) in the dependent variable +(x, y, t) is equivalent to the 
requirement that 

I I dx ah, Y) JTW, Y, t)l = 0 (2.2) 

for any function a(x, y). 
Consider the vorticity equation (1.1) in the form (2.2), namely 

jj dx a(x) al/at = fj dx 4x1 J(L $1. (2.3) 

Because of the boundary condition (1.2), the right-hand side of (2.3) can also be 
written as 

ff dx lJ(tk a) (2.4) 

or 

II dx $J(a, 0. (2.5) 

Therefore (2.3) can be written in the general form 

jj dx aat;/at = jj dx{a-ML ti) + bCJO,k a) + c$J(a, 0>9 (2.6) 

where u, b, c are any three constants that sum to unity, 

a+b+c=l. (2.7) 

The vorticity equation (1.1) is equivalent to the requirement that (2.6) hold for any 
choice of a(x, y). The conservation laws for energy and enstrophy correspond to 
the particular choices a = - $ and a = [, respectively. 

Now suppose that the integrals in (2.6) are replaced by sums over IV gridpoints 
to obtain the finite-difference analogue 

1 fiiaidi=C Qi{aaiJi[Ci, $k] + bCiJi[l(/j, akl + c$‘iJi[aj, C,l} 
i i 

=Ffa,, . . . . a,,, Cl, . . . . L $,, . . . . Icl”; a, b, cl 

E F[ai, lj, +k; U, b, ~1, (2.8) 

where (ai, li, $i) is (a, 5, $1 evaluated at the ith gridpoint, sZi is the area within 9 
that is closest to the ith gridpoint, and 

J,[A,, I$] = Ji(Al, . . . . A,, B,, . . . . B,) (2.9) 
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is any finite-difference analogue of J(A, B) at the ith gridpoint. Then 

f2,ai = aqaa, (2.10) 

is a finite-difference analogue of the exact vorticity equation (1.1). For a regular 
square grid of side A, 52, = R* at every interior gridpoint. 

The conservation properties of (2.10) are most easily established from (2.8). The 
discrete enstrophy 

(2.11) 

is conserved by (2.10) if the right-hand side of (2.8) vanishes when ai=ci at all i. 
This follows by simple algebraic cancellations if a = b and if the discrete Jacobian 
Ji has the antisymmetry property 

J,[A,, Bk] = - Ji[Bj, Ak]. (2.12) 

Similarly, if (2.12) holds, and if a = c, then (2.8) vanishes when ai = - Ijli, and there- 
fore 

Equation (2.13) implies the conservation of a discrete analogue of the energy (1.7), 
provided that the discrete analogue of (1.3) takes a general form obtained below. 
We take up the question of mean vorticity conservation at the end of this section. 

In summary, if the discrete Jacobian Ji is antisymmetric in its discrete arguments, 
then the discrete analogue 

(2.14) 

of the exact vorticity equation (1.1) obeys analogues of the Arakawa properties 
(1.5) and can conserve discrete analogues of the energy and enstrophy. 

The discrete Jacobian ji defined by (2.14) is the sought-for generalization of 
Arakawa’s Jacobian. Note that the antisymmetry property (2.12) is the only restric- 
tion on the “initial” Jacobian Ji. In particular, Ji need not itself satisfy analogues 
of the Arakawa properties (1.5). The Jacobian fi defined by (2.14) does, however, 
satisfy analogues of (1.5), as has just been proved. 

The above procedure for obtaining fi actually applies to finite-differences, finite 
elements, spectral truncations, or to any other general method of producing discrete 
approximations. To appreciate this, let (2.8) be replaced by the general discrete 
analogue 

C Qiai%i= $SCai, Cj, $kl + $s[Ci3 *j, ak] + $S[tii, aj, CR], (2.15) 
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where S[A,, Bj, C,] is any discrete estimate of 

I dx AJ(B, C). (2.16) 

In the present context, the indices can represent gridpoints, finite-element nodes, 
spectral modes, or any combination thereof. (The weights G?2i on the left-hand side 
of (2.15) have a different interpretation for the different methods of discretization. 
This point will be clarified by the examples of Section 3.) Again, the arderivative 
of (2.15) is the discrete analogue of the exact vorticity equation (1.1). The right- 
hand side of (2.15) vanishes when ai = ci (for all i), and when ai = - $i, provided 
only that S is antisymmetric in its last two arguments, i.e., 

SEA,, Bj, C/cl = -S[A,, Cj, Bk]* (2.17) 

The requirement (2.17) is easy to satisfy. To see this, realize that any discrete 
approximation to (2.16) must take the general cubic form 

SCAi, Bj, C/c] =C D+AiBjCk, 
;yk 

(2.18) 

where the coefficients D, do not necessarily have the antisymmetry property 
D,= -D, required by (2.17). However, the estimate 

S[Ai, Bj, ck] = $1 (D,-D,)AiBjCkv 
gk 

(2.19) 

obtained by replacing (2.18) by its antisymmetric part with respect to B and C, has 
the same order accuracy as (2.18), and is, moreover, exactly antisymmetric. Thus 
the “initial” Jacobian Ji and discrete estimate (2.18) for (2.16) can be selected on 
the basis of accuracy and convenience alone. The “relined” Jacobian yi will 
automatically have the same order of accuracy and obey analogues of the Arakawa 
properties (1.5) at a cost of only a factor three in computation. Thus there are as 
many discrete Jacobians xi with the Arakawa properties (1.5) as there are general 
nonconservative discrete Jacobians Ji. 

The dynamics (2.14) based on the generalized Arakawa Jacobian fi conserves an 
analogue of the energy (1.7) only if (2.13) is an exact time derivative. This depends 
on the discrete form of Eq. (1.3) relating the streamfunction and vorticity. Equation 
(1.3) is equivalent to the statement that 

(2.20) 

for any function /?(x, y) that is zero on r. (The restriction on p is allowed because 
(1.3) is required only within 9.) An integration by parts brings (2.20) into the form 

(2.21) 
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We now discretize (2.21), being careful to discretize the left-hand side of (2.21) in 
the same way as the left-hand side of (2.8). The result is 

(2.22) 

where (V/I .V$), is any discrete estimate of VP. Vll/ at the ith gridpoint (node, or 
mode) that has the symmetry property 

tvfi ‘v$/i= Cv+ ‘vP)i. (2.23) 

The Pi-derivative of (2.22) is the discrete analogue of (1.3). Now, differentiate (2.22) 
with respect to time and set /Ii = tii for all i. By (2.23), the resulting expression is 
an exact time derivative, and it then follows from (2.13) that the discrete energy 

is conserved. 
The discrete dynamics also conserves the analogue 

of the mean vorticity (1.9) provided that (2.8) vanishes when ai = (1 )i for all i. Here, 
(1 )i is the discrete representation of unity, and (1 )i = 1 for gridpoints or nodes but 
not necessarily for spectral modes. Unfortunately, the general algorithm outlined 
above does not guarantee the conservation of (2.25). However, this is unsurprising 
because it is well known that spectral approximations, which are included in our 
method, do not generally conserve mean vorticity in bounded domains. 

We can summarize broadly as follows. The steps required to establish energy and 
enstrophy conservation from the exact dynamical equations fall into two general 
categories: integrations by parts and simpie algebraic cancellations. However, only 
the latter are easily carried over to discrete representations. The essence of our 
method is, loosely speaking, to perform the parts integrations before discretization. 
The remaining steps, which involve only multiplications and additions, transfer 
easily from the continuous to the discrete representations. 

In the remainder of this paper, we use the method given above to derive discrete 
Jacobians that conserve analogues of the energy and enstrophy. The examples of 
Section 3, which offer a concrete illustration of our method, include a new conser- 
vative Jacobian that mixes gridpoints in one direction with spectral modes in the 
other. 
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3. EXAMPLIZS 

A. Arakawa ‘s Jacobian 

As a first example, we consider 2-dimensional flow in a rectangular region of the 
(x, y) plane and obtain a familiar result. Let the flow domain be covered by a 
regular square grid with grid-spacing A, and let ei and ci be the streamfunction and 
vorticity at the ith gridpoint. Let the discrete dynamics be the cli derivatives of 
(2.15) in the form 

(3.1) 

with 

SCAi,Bj,Ck]= 1 S(Al+A2+Aj+Aq) 
gridboxes 

x f{(B2-B4)(C3-Cl)-(C2-C4)(B3-B,)} (3.2) 

as the discrete approximation to 

is dx AJ(B, C). (3.3) 

The right-hand side of (3.1) is a sum over all gridboxes in the flow domain, and, 
inside this sum only, the subscripts refer to the representative gridbox shown in 
Fig. la. A summation over gridboxes is preferable to a summation over gridpoints, 
because the former does not require modification near the boundaries. The dis- 
cretization (3.2) of (3.3) links every gridpoint to the smallest possible number of 
adjacent gridpoints and is, in that sense, the simplest choice possible. It can easily 
be checked that yi = li defined by (3.1), (3.2) is identical at interior gridpoints to 
the Jacobian discovered by Arakawa [l, Eq. (45)]. At the boundary points 
(Fig. lb), where I,+ = 0, the formulae (3.1), (3.2) yield 

5’o=l/(6h2){~2(r1--r3)+~3(rl+r2-54-55)+~4(r3-rs)} (3.4) 

and at the corner points (Fig. lc), 

Co= Wh2)W2K1 -Ml. (3.5) 

The terms in (3.4), (3.5) can be grouped into averages of finite-difference 
approximations to J([, +) in several ways. 

B. Irregular Triangular Mesh 

Next consider 2-dimensional flow in an arbitrary bounded region 9 of the plane. 
Let 9 be covered by a triangular mesh as shown in Fig. 2. The elementary triangles, 



254 

a 

SALMON AND TALLEY 

FIG. 1. Representative gridboxes (a) in the interior; (b) near the boundary; and (c) at a comer. 

which have various shapes and sizes, fit closely against the boundary curve r. The 
discrete dependent variables are the values of a, $, and < at the mesh-points. 
Replace (2.6) by 

= fsCai, Cj9 +/cl + fsCli9 $jY tlkl + fsC$iv aj9 C/cl, (3.6) 

where the summation is over all triangles in 9 and, within each triangle of the sum, 
the integers 1,2, 3 denote the vertices, numbered counterclockwise, as shown for a 
representative triangle in Fig. 3a. Q,, is the triangle area. We choose 

SCAi, Bj, C/cl = 1 fQtr(A1 +A,? + A,)CJ(B, C)ltr (3.7) 
triangles 

as the discrete approximation to (3.3), where 

[J(B,~)~,,=~~,~(B,~~-B~~~-B~c~-B~c~+B~c~+B~~~) (3.8) 

is a discrete approximation to J(B, C) on the triangle. The estimate (3.8) is exact 
if B and C depend linearly on x within the triangle. Note that S given by (3.7) 
satisfies the antisymmetry property (2.17). Thus the Jacobian obtained by differen- 
tiating (3.6) with respect to each rq has analogues of the Arakawa properties (1.5). 

t 

Y 

L- x 

FIG. 2. A closed domain covered by a triangular mesh. 
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;;‘-! “b@3; @““-I l--C,-- 2 1 2 
1 

FIG. 3. A representative (a) triangle; (b) interior meshpoint; and (c) boundary meshpoint. 

Npw let subscript zero denote a representative interior meshpoint, and let 
1) 2, 3, . . . ) n denote the n surrounding points, numbered counter-clockwise. Refer to 
Fig. 3b. Then straightforward manipulation on (3.6k( 3.8) yields 

L > 
1 Oi %O=f C Si($i+l-$i-117 (3.9) 

i= 1.n i= 1.n 

where the first sum is the total area of all the triangles with meshpoint zero as a 
vertex, and tiO=tjn, tin+r= tjr . The right-hand side of (3.9) is a discrete 
approximation to the integrated flux of vorticity into the region shown in Fig. 3b. 
At boundary points (Fig. 3c), the sum in (3.9) is replaced by 

Cl**+ C ri(~i+l-I(/i-l)-rn~,-l. (3.10) 
i=2,n-1 

The formula (3.9) was suggested by Williamson [4], who also noted its connection 
with Arakawa’s scheme. 

To obtain an analogue of Eq. (1.3) relating the vorticity and streamfunction, we 
replace (2.21) by the approximation 

c Wtr(hL + 82C2 + 83C33 = - c QtrPlp *W)tr9 (3.11) 
triangles triangles 

where the integer subscripts again refer to Fig. 3a, and 

(plus six additional terms whose form follows by symmetry) is a discrete 
approximation to VP -Vtj on the triangle. Again, the estimate (3.12) is exact if both 
/I and J/ depend linearly on x. That is, (3.12) is derived by assuming that, within 
each triangle, 

P(x,y)=A+Bx+Cy and J/(x,y)=D+Ex+Fy (3.13) 

with the six constants A, B, C, D, E, F determined by the three nodal. values of 
/I and +. Now let subscript zero again correspond to the center point of Fig. 3b 
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(a representative interior meshpoint), and take the &-derivative of (3.11). The 
result is 

+: c Q;‘(c,a,+l COSyjlC’j+cia,cos e,$i+l), (3.14) 
i=l,n 

where the summations are over the n triangles surrounding the central meshpoint, 
and the lengths, areas, and angles are defined in Fig. 3b. Equation (3.14) determines 
the streamfunction from the vorticity at all interior meshpoints. 

By the general theory of Section 2, the discrete dynamics (3.9), (3.14) conserves 
the energy 

1 c QtAW * W)t, (3.15) triangles 
and the enstrophy 

(3.16) 
triangles 

For the simple case in which Fig. 3b is a hexagon composed of equilateral 
triangles of side d, we have 

ci = ai = d, 1;2,= ,,/?I4 d2, yi = ei = rr/3 (3.17) 

and the dynamics (3.9), (3.14) takes the simple forms 

80=1/(3J?d’) C li($i+l-Ic/i-l) 
i= 1.6 

(3.18) 

and 

L-o = 2/W2) c ($i - $0) 
i= 1.6 

(3.19) 

previously given by Masuda [S] and Sadourny, Arakawa, and Mintz [6]. 
The triangular mesh is an important example because an arbitrary curved surface 

in 3-dimensional space can be replaced by a surface consisting of piecewise planar 
triangles. If, for example, G@ is a sphere, then the approximating surface would 
resemble a “geodesic dome.” Within each triangle, the surface geometry is flat, and 
(3.9), (3.14) apply without change. Moreover, since (3.9), (3.14) are coordinate-free 
(that is, they make no reference to a global system of coordinates) there can never 
be problems with coordinate-system singularities like the convergence of meridians 
at the poles of a sphere. 
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C. Spectral and Finite Element Methods 

It is trivial to show that the general method of Section 2 includes spectral and 
finite-element approximations. We simply discretize all the exact equations by 
replacing a, c, and i/j by the finite sums 

a= C ai(t)Vi(xh etc., (3.20) 
i=l,N 

where q,(x) are othogonal functions in the case of spectral approximation and 
shape functions in the case of finite elements. The discrete approximation 

(3.21) 

to (3.3) is obviously antisymmetric in B and C. However, the integrals in (3.21) can 
be awkward to compute, and, since, as shown in Section 2, the conservation of 
energy and enstrophy depends only on algebraic cancellations, there seems little 
reason not to use the generally simpler finite-differences. On the other hand, spec- 
tral approximations have the highest order accuracy, and, as shown by Fix [a], 
finite-element approximations can be arranged to conserve an analogue of the mean 
vorticity (1.9). Of course, the same discrete equations often (perhaps always) 
correspond to both a finite-difference and a finite-element approximation. 

D. A Hybrid Spectral and Finite-Difference Jacobian 

Finally, we consider the dynamics (l.l), (1.3) in an infinite channel with walls at 
y = 0 and y = W. The boundary conditions are that the flow be periodic in the 
x-direction, and that II/ be zero at y = 0 and equal to a prescribed constant at 
y = W. The discrete representation consists of N gridpoints with spacing dy across 
the channel, and 2L+ 1 Fourier modes along the channel, including an 
x-independent “mean flow.” Thus, 

Ii/(x, rdy, t) = C J/k(x, t), r=l toiV, (3.22) 
m= -L,L 

where 

C&, t) = vL,(f) expP,x) (3.23) 

and similarly for c and a, with tioN = constant, tjmN = 0 (m #O), and em0 = 0. We 
write (2.15) in the form 

Na,, ek,l= j dx 1 dy~~~{a’,~~+a~+,+‘~~+‘}, (3.25) 
r=O,N-1 m n 

C&j, B/c/, cm,] = TCA,, B/c,, cm,] - TM,, Ck,, B,,], (3.26) 
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and 

TCA,,,&,,C,,,,,~=~~X C CCiki~(~~~,++~+l~/'+l) 
r=O,N- 1 m i 1 

c(C;+'-C;)/Ay . 
n 

(3.27) 

Here, (3.26) is perhaps the simplest discrete approximation to (3.3), with (3.27) a 
discrete approximation to 

A ayaxacfay. (3.28) 

The discrete analogue of the vorticity equation (1.1) is obtained by taking the 
derivatives of (3.25) with respect to the aml(t). At interior gridpoints we obtain 

i,,=fAC+ +krl E i/WY) 1 {2kjCjr($n,r+ I - $,,,r-~) 

&ii&,,=&, 

+2kn$nr(-lj,r+l +C,r-1) 

+knlJ$n,r+l -~,,,-1)-kj~,,(rj,,+1-rj,,-1) 

+ kj($ n,r+li;;r+l-~n,r--15j,r-l) 

- kz(+ n,r+lrj,r+l-~n,r--lrj,r--l)}. (3.29) 

The Jacobian defined by (3.29) corresponds to the exact Jacobian J([, rl/) in the 
form 

J(L $I= fmxll/, - WJ, + WyL- IllKyL + (IclCx - ru,> (3.30) 

with y-derivatives replaced by centered differences. 
Energy conservation demands a consistent discrete analogue of (1.3). For this we 

write (2.22) as 

R&&l= - jdx c AYCC {-k,k,~(B~~~+B~+‘~:+‘) 
r=O,N-1 m n 

+ UK+ ’ - PIJAY (+I,+ ’ - WAY) (3.31) 

and note that the left-hand side of (3.31) matches that of (3.24). The j?,,-derivative 
of (3.31) yields the analogue 

L= -+L+ {~m,,+1-2~m,+~,,,-~}l(A~)* (3.32) 

of (1.3) at interior gridpoints. It can be verified that the discrete dynamics (3.29), 
(3.32) conserves discrete analogues of the energy and enstrophy. Since (3.24), (3.31) 
are probably the simplest discrete analogues of (2.15), (2.23) for the chosen hybrid 
representation, this discrete dynamics is probably the simplest conserving scheme 
possible. 
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