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ABSTRACT

The linear stability of thin, quasi-geostrophic, two-layer zonal jets on the g-plane is considered. The meridional
structure of the jets is approximated in such a way as to allow an exact dispersion relation to be found.
Necessary conditions for instability and energy integrals are extended to these piece-wise continuous profiles.
The linearly unstable modes which arise can be related directly to instabilities arising from the vertical and
horizontal shear. It is found empirically that the necessary conditions for instability are sufficient for the cases
considered. Attention is focused on unstable modes that penetrate far into the locally stable ocean interior
and which are found when conditions allow the jet instability phase speeds to overlap the far-field, free-wave
phase speeds. These radiating instabilities exist in addition to more unstable waves which are trapped within
a few deformation radii of the jet. The growth rates of the radiating instabilities depend strongly on the size
of the overlap of instability and free-wave phase speeds. The extreme cases of this are westward jets which
have vigorously growing, radiating instabilities and purely eastward jets which do not radiate at all. Radiating
instabilities are divided into two types: a subset of the jets’ main unstable waves near marginal stability and
instabilities which appear to be destabilized free waves of the interior ocean. It is suggested that the fully
developed field of instabilities of a zonal current consists of the most unstable, trapped waves directly in the
current with a shift to less unstable, radiating waves some distance from the current. A brief comparison of
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the model results'with observations south of the Gulf Stream is made.

1. Introduction

In many parts of the ocean, the circulation is con-
centrated in narrow currents. These currents are nearly
zonal and may be modeled as quasi-geostrophic jets.
The jets are usually baroclinic as well as having large
horizontal shear. Thus they may have the capacity for
both baroclinic and barotropic instability. Ocean ob-
servations show that variability in velocity and density
is very large in and near such currents (e.g. Dantzler,
1977; Richardson, 1983; Schmitz, 1978; Bernstein and
White, 1977; Schmitz et al., 1982). The variability is
undoubtedly due to instability [see Philander (1978)
for a review of eddy energy-producing mechanisms].
The energy from the instabilities of these intense cur-
rents finds its way into the gyre interiors: one mech-
anism which is being explored is the propagation and
decay of Gulf Stream rings (Flierl, 1977; Flierl et al.,
1980). It is the purpose of this paper to explore a related
possibility: namely, that the structure of the eddy field
south of the Gulf Stream can be understood through
a consideration of the unstable modes of the Gulf
Stream itself.

In this paper the linearly unstable modes of sym-
metric, quasi-geostrophic jets which have both hori-
zontal and vertical shear are determined. All unstable
jets have instabilities which are trapped to the jet, pen-
etrating only a short distance into the stable (or less
unstable) bordering regions. Another type of instability
which penetrates large distances into bordering regions
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is “radiating”, as explored by Dickinson and Clare
(1973) in the context of parallel shear flow. A major
focus of this paper is the existence and structure of
these radiating instabilities, which take the form of
modified Rossby waves in the ocean interior. A con-
dition for the existence of radiating instabilities is that
the phase speeds and x-wavenumbers of the jet insta-
bilities and the modified Rossby waves correspond.
This condition predisposes westward, barotropic jets
to radiate while eastward, barotropic jets do not radiate
(Talley, 1983). The same is true of simple westward
and eastward baroclinic jets, as seen in this paper. If
eastward, barotropic jets are modified slightly, by in-
troducing vertical shear in the far-field or vertical un-
dercurrent, radiating instabilities can be produced.
When radiation is possible, in that the instability phase
speeds and Rossby wave phase speeds overlap, large
numbers of radiating instabilities are found in addition
to trapped modes.

Previous investigators (e.g., McIntyreand Weissman,
1978; Dickinson and Clare, 1973) have suggested that
the linear growth rates of radiating instabilities are
much lower than those of trapped instabilities. It is
found here that, while radiating instabilities do have
lower growth rates than the most unstable, trapped
instabilities, in some cases their growth rates can be
nearly as large as those of the most unstable waves,
for instance for a westward jet. In addition, for some
parameter ranges, all instabilities are radiating.

The present paper is concerned with linear insta-
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bilities which radiate. It is apparent from studies of
nonlinear stability of vertically sheared flows that are
unstable to Kelvin-Helmholtz modes and that also
can support internal gravity waves that linearly ra-
diating instabilities can be produced (Lindzen and Ro-
senthal, 1976), that the nonlinear evolution of trapped
instabilities might result in radiation (Edmon, ef al,
1980) and that trapped Kelvin—-Helmholtz instabilities
can interact nonlinearly to produce a radiating internal
gravity wave (Fritts, 1982). Nonlinear mechanisms for
production of radiating quasi-geostrophic waves are
not explored in this paper: the two cited cases of non-
linear production of radiating waves would presumably
carry over to the quasi-geostrophic problem.

There have been several thorough parameter studies
of mixed baroclinic-barotropic instability using a two-
layer model. Orlanski (1969) considered the effects of
topography and varying stratification on the stability
of a baroclinic jet. Hart (1974) showed how the relative
importance of barotropic and baroclinic instability de-
pends on the relative layer depths and Froude number.
Gent (1974, 1975) discussed the effect of variable jet
widths and § on the unstable modes, showing that the
meridional scale of the most unstable wave is set by
the jet width rather than the Rossby deformation ra-

dius. Haidvogel and Holland (1978) showed that a’

linear stability analysis of instantaneous and time-av-
eraged flow profiles taken from two-layer, eddy-re-
solving general circulation models yields meaningful
results for the lowest order properties (wavenumber,
phase speed and growth rate) of the dominant waves
in the complete model. The higher order quantities
(Reynolds stress and heat flux) were not predicted as
well by the linear stability analysis. They also found
that proper simulation of the barotropic instability
process requires a velocity profile that is closer to the
instantaneous velocity than to the time-averaged flow
since the sharpness of the Gulf Stream is lost in av-
eraging because of meandering. Holland and Haidvogel
-(1980) investigated the effect of changes in the amount
of horizontal shear in the lower layer, Froude number,
relative layer depths and ratio of 8 to the relative vor-
ticity on the relative importance of barotropic and
baroclinic instability. The jet that they considered is
similar to one of the cases considered here. Their dis-
persion relations were similar to those here and must
therefore have included radiating instabilities. How-
ever, their focus was on the most unstable waves, which
were trapped, so the radiating nature of some of the
instabilities was not made clear.

Pedlosky (1977) showed how modified, neutral
Rossby waves in a vertically sheared flow could be
forced by a corrugated, vertical, moving boundary.
The flow was stable because of large, non-zero 8. The
forced waves were either evanescent or radiating de-
pending on whether the phase speed condition was
satisfied. The present study extends this idea to the
motivating situation, namely that periodic instabilities
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of a zonal current might excite the ambient waves of
the far field which then transmit energy from the cur-
rent far into the ocean interior.

It is hypothesized here that the fully nonlinear flow
contains more than just the initial basic flow and the
most unstable wave: it is suggested that waves with
lower growth rates survive and grow and that these
waves, which have much larger meridional decay scales
than the more unstable waves, dominate the far field
of the jet while the most unstable waves are most im-
portant right in the jet.

The chief importance in the present results, in ad-
dition to being yet another discussion of the linearly
unstable modes of zonal flows, is that they suggest that
at least part of the mid-ocean eddy field can be gen-
erated some distance away by more intense currents.
The results only suggest this possibility since we cannot
predict from linear stability analysis alone which in-
stabilities will survive to dominate the fully nonlinear
flow.

The model is defined in Section 2: all flows are
symmetric, two-layer jets with strong horizontal and
vertical shear. The jets are simplified using an extension
of Rayleigh’s (1879) method to two-layer flow on the
B-plane. In Section 3 linear stability results are given
for nonradiating and radiating jets. Two types of ra-
diating instability are found: 1) trapped instabilities of
a nonradiating jet which are enabled to radiate by a
slight change in the jet profile and 2) destabilized
Rossby waves of the far field. In Section 4, a qualitative
comparison of the model and the eddy field near the
Gulf Stream is made.

2. The basic problem

The stability of narrow, intense baroclinic jets is
examined here using two simplifications for the flow
profiles: the vertical structure is represented by a two-
layer model in which the two layers have equal depth,
thus retaining only two vertical modes; the horizontal
shear is restricted to specific zones, using flow profiles
similar to Rayleigh’s (1879) “broken line” profiles. It
is assumed that the basic flow is zonal and steady and
that the perturbation streamfunction has much smaller
amplitude than the mean flow streamfunction. The
quasi-geostrophic, linearized, inviscid, nondimensional
potential vorticity equations for the perturbations in
the two layers are (cf. Pedlosky, 1979):

(é + Un _a—)[VH2¢n — (~1)"F(¢> — $1)]

at ax
00, 00,
Q

=0,
dy 0x

n=1,2. (1)
Here, (V,7) is the two-dimensional Laplacian (8%/9x>
+ 8%/3y?), and ¢; and ¢, are the perturbation stream-
functions for the top and bottom layers, respectively.

The equations were scaled using L, U and H (horizontal



DECEMBER 1983

length, flow velocity and layer depth). The non-di-
mensional parameters are 8 = B,L*/U and F = (L/
LR) where Ly is the internal deformation radius, Lg
= (g'/f)"?. The mean flow, U, and U,, depends only
on latitude y. The potential vorticity gradient for the
mean flow in each layer and in each horizontal region
is

B o Uypy— (1Y, - U, n=1,2.
The boundary conditions are that the disturbances ¢,
and ¢, be bounded at y = *oo if the ocean is un-
bounded. If the wave is not growing and is purely
oscillatory in y, the boundary condition at y = +c0 is
that the meridional group velocity be outward. If there
are zonal boundaries at y = £H, ¢, = ¢, = 0 at the
boundaries.

Normal mode solutions to (1) are sought, with ¢,
= @,(3)e ™" and ¢, = B,(y)e™", Both ¢ and &,
are allowed to be complex while k is strictly real. Eq.
(1) becomes

2,
(U, — C){d——szb - (—1)'"F(®, — .)}
aQ”cp =0, n=1,2. (2
ay

Specific flows are modeled by piecing together re-
gions in which either

U,, U, = constants (3a)
or
001 _ 90 _
3 3 (3b)

so that, in a given region, either the flow speeds are
constant or the potential vorticity gradient vanishes.
The flow is illustrated in Fig. 1. The length scale used
in non-dimensionalization is the half-width of the cen-
tral jet (Region I). The shear zone (Region II) is 1
< |yl < D. Boundaries are at |y| = H where H > L
(in most models considered here, H — o). The velocity
is specified in the upper and lower layers in the central
jet (U1, Up) and outside the jet (Uy;, Uy,). Velocity
is scaled by U¥;. Also, Uy, = 0 in all models.
Because the horizontal velocity gradient dU,/dy has
discontinuities, the overall potential vorticity gradient,
including the points of discontinuity, will have delta
function contributions. The necessary conditions for
instability in two-layer flows (Pedlosky, 1979) are of
course influenced by these delta functions. As given
by Talley (1983), the effective potential vorticity gra-
dient, which includes these delta function contribu-

tions, is )
0,90, _[d) 5,
oy 9y Lavl, o

where brackets indicates the jump in the quantity at

“)
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FI1G. 1. Baroclinic jet modeled with two layers and meridional
regions of uniform velocity or uniform potential vorticity. In most
cases examined, there are no boundaries at |y =

y = y. The necessary conditions for instability can
be written as

s |8, 90,
G ? J‘—H dy U, — cl* 9y 0. (5a)
|‘I>n|2 80,
zf &y g gE Un = @) 3> 0. (5b)

In evaluating the necessary conditions for instability,
the delta function contributions must be taken into
account: indeed in the purely barotropic analog of the
present model, the delta functions are the only non-
zero contributions to the potential vorticity gradient.
It is necessary to examine the energy integral to
determine whether discontinuities in U, or dU,/dy
change the usual expressions for transfer from mean
kinetic energy to the perturbation kinetic energy (Ped-
losky, 1979). Details of the derivation of the energy
equation are given in the Appendix. When the kinetic
energy transfer terms are written in the form
(—uyvy)dU,/dy and U, is continuous, -there are no
changes in the energy equation, because dU,/dy is sim-
ply discontinuous. The energy transfer equation is

" 9E(¢) f” AL Wregregl L
fH ot dy = —H[¢1x¢ly dy G2ty dy

+ FU, - U2)¢1¢2x]dy, 6)

where

F
E(¢) =75 (@ — ¢2)’ + 2 5 [(¢nx)2 + ($ny)]-

n= 1

These terms will be used to determine the relative
importance of kinetic and potential energy transfers.
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The kinetic energy terms, of course, are non-zero only
in Region II, where dU,/dy is non-zero.

Limits on the complex phase speed of instabilities
are given by Howard (1961) and Pedlosky (1964). Ra-
diating instability might occur when the range of in-
stability phase speeds overlaps the range of phase speeds
of modified Rossby waves in the irradiated region
(MclIntyre and Weissman, 1978). Thus the possibility
of radiation is easily predicted in advance of actual
examination of a flow’s instability. Radiating insta-
bilities are defined by Talley (1983). In short, they are
instabilities that are adjacent to neutral modes that
have purely real y-wavenumbers in the irradiated re-
gion. The neutral modes are Rossby waves, modified
if there is vertical shear. The radiating instabilities in-
vestigated here do not depend on the presence of
boundaries at |y| = H: with the exception of a dis-
cussion of the effect of zonal boundaries on the ra-
diating instabilities at the end of Section 3, all models
considered have no zonal boundaries. Previous dis-
cussions point out the possibility of two types of ra-
diating instability: those which depend on the presence
of boundaries and those which arise solely from the
jet. The present investigator did not discover any in-
stabilities which were solely due to the presence of
zonal boundaries, but the investigation of these cases
was admittedly less thorough.

Solutions to the potential vorticity equation (2) are
found for Regions I, II and III subject to boundary
conditions at y = +H or *oo and to matching con-

.ditions at the breaks between the regions. Matching
conditions are obtained by requiring that there be no
delta function contributions to the continuity and po-
tential vorticity equations at the breaks. When the
continuity equation is integrated across a profile break,
we obtain the condition

[%:I =0, n=1,2,
at yo

where 7, is the interface displacement, v, = Dy, /Dt,
and square brackets indicate a jump in the quantity
at y. In normal mode form, this becomes

e, -0
U,,—cyo

This condition is equivalent to requiring that the nor-
mal velocity and interface displacement be continuous.
When the potential vorticity equation is integrated
across a break, we obtain

Du,
[—”—] =0, n=1,2.
Dt Yo

(7a)

In normal mode form, this becomes

de, _ o dU,,] o
dy 4y dy,

[(Un -0 (7b)
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The matching conditions (7a, b) are identical to those
used in the barotropic instability problem.

In order to solve (2), we must first solve (3b) for U,
and U, in Region II, requiring that they be continuous
at y = 1 and D. The flow profile is thus

2
Uly) = ‘62— + ¢ + ¢,y + ¢3 cosh(2F)' 2y

+ ¢4 sinh(2F) 2y, (8a)
32
Us(y) = 52— + ¢, + ¢,y — ¢3 cosh(2F)2y
— ¢4 sinh(2F)'2y, (8b)
where
o = Gut Up)D — (Vo + Upg) | 6D
! 2D-1) 2’
o = (Uot + Up)D — (U + Up) B —1)
2 - 2D-1) 2
(Usy — Uy,) sinh(2F)'72
cn = + (Un - Ulz) sinh(ZF)l’zD
’ 2 sinh(2F)(D — 1) ’
(U1 — Uy,) cosh(2F)'2 ,
Cf = - (Un - UIZ) COSh(2F)1/2D
=

2 sinhF)YA(D — 1)

Note that if the velocity in, say, the lower layer is the
same in Regions I and III (U, = Uy,), there is still
horizontal shear in Region II since the potential vor-
ticity gradient is required to vanish there.

In Regions I and III, 8Q,/dy = B — (—1)"F(U,
— U,), independent of y. Seeking solutions to (3) of
the form &, = 4,¢”, we find:

A (U= o=k = F)+ 8+ FU, ~ U

Al F(Ul - C)
)]
where
- 6(Ul + U, — 2C) F(Ul — U2)2

22Uy — (U —©)
+ 1
2(U; = e)(U, — ©)
— 28F(U, + U, — 2c)(U; — Up)?
+ Fz[(Ul — U2)2 4+ 2(U; — (U, — C)]Z}I/Z. (10)

In Region II where the potential vorticity gradient is
zero, '

AU, = e)(Uz — ©)

{BA(U, — Uyy?

r2=k*+2F
rz = k%

The associated amplitude ratios (9) are —1 and 1, re-
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spectively. These are the baroclinic and barotropic
modes and are also the correct solutions in regions I
and III when 8 and (U, and U,) are zero.

Only symmetric solutions are sought. The antisym-
metric (varicose) solutions were discarded because their
growth rates are generally lower than those of the sin-
uous mode in the barotropic problem (Talley, 1983).
In the jet itself, the most unstable wave will probably
dominate, so it may be justified to omit the varicose
mode for the near field. However, it is argued in this
paper that weakly growing, radiating waves may be
important in the far field (Region III), so elimination
of the varicose modes may not be altogether justified.

The symmetric solution ®, in regions I, II and III
is

) ®, = g™ + ae™ + a3e:;’y + g4e";'y )
P, = fae™ + ae™™) + faze™ + ae™™)f °
(11a)
@] = b,eky + bze—ky + b3ely + b4e_’y
D $, = b1 + be™ — bye” — b’ (11b)
1) ®, = die” + dye ™ + dse?” + a[4e"3y )
&, = g(die” + dae™™) + g(dse” + dye™™)|
(11c)

Here m, 1, fand f correspond to r_, r, and the as-
sociated 4,/4, in (9) and (8) with U, = Uy; p, P, &
and g correspond to r_, r, and the associated A4,/A4,
with U, = Uy, | = (k? + 2F)'2. Application of the
boundary conditions and matching conditions then
allows evaluation of all but one of the coefficients a,,,
b, and d, and yields the dispersion relation, c(k). The
transcendental equation for ¢ is solved numerically
using the secant method with complex arithmetic.

Instability is possible when the necessary conditions
~ for instability (5) are satisfied. One requirement is that
the potential vorticity gradient change sign (5a). This
may occur if § + F(U; — U,) and 8 — (U, — U,) are
of opposite sign in either Region I or III: since this is
the usual necessary condition for baroclinic instability,
unstable modes which resuit from this condition being
satisfied may be referred to as vertical shear modes,
even if the flow is simultaneously barotropically un-
stable.

The effective potential vorticity gradient may also
change sign if the portion equivalent to 8 — Uy,
changes sign. The only non-zero contributions to U,
which affect the conditions (5) are delta functions at
the profile breaks, so satisfaction of this condition re-
quires that the delta function be negative which in
turn requires that dU,/dy be of the proper sign (4).
Modes which arise when § — U,,, changes sign may
be referred to as horizontal shear modes, even if the
flow is also baroclinically unstable. )

A third possibility for sign change of dQ,/dy is when
B8 £ F(U, — U,) changes sign from Region I to Region
II1. Since this relies on there being both horizontal and
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vertical shear, instabilities that arise because of this
change may be called mixed. However, the second
necessary condition for instability (5b) eliminates these
instabilities when there is no net horizontal shear in
the lower layer (when Uy, = Up,), which is the geometry
of most examples explored in the following section.

The usual definition of mixed instabilities is that
they draw energy from both the mean kinetic and
potential energy. For jets considered here, all modes
of instability are mixed in this sense for some portion
of the parameter ranges. I have, however, chosen to
identify the modes of instability by the ranges of pa-
rameters for which they occur and by their presence
or absence when either the horizontal or vertical shear
is removed. Thus, a horizontal shear mode will dis-
appear when the horizontal shear is removed, etc. A
mixed instability will disappear when either the hor-
izontal or vertical shear is removed. In actuality, for
the profiles considered in this paper, the definition of
‘mixed instabilities could not be tested since no mixed
instabilities were possible, because of the necessary
condition for instability (5b).

3. Results

The stability of the simple flows described in this
paper depends on a large number of parameters: the
relative vertical shear in and outside the jet, the relative
width of the horizontal shear zones, the internal de-
formation radius, the total width of the zonal channel,
B and the zonal wavenumber k. In all examples that
follow, the shape of the jet, the deformation radius
and the width of the channel are set and then 8 and
k are varied.

The stability of flows with a jet in the upper layer
and (nearly) no flow in the lower layer is considered
first. The flow is thus similar to the barotropic jet con-
sidered by Talley (1983) with the addition of a vertical
shear in the jet and thus an additional energy source.
The energetics and structure of the unstable modes
are strongly affected by the addition of vertical shear,
so this flow is treated in some detail here. Just as for
the barotropic jet, the basic, eastward, baroclinic jet
has no radiating solutions while a westward baroclinic
jet radiates vigorously. In order for a basically eastward
jet to radiate, the flow in the outer regions or the lower
layer must be modified somewhat so that the phase
speed condition can be met. Three examples of such
modified jets and their instabilities (non-radiating and
radiating) are described. Finally, the effect of varying
some of the flow parameters is explored.

a. Basic jet
The basic jet is illustrated in Fig. 2a. The profile is
Uy=1, Up=0, Up=0 (12)
F=5 D=17, H— o
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FIG. 2. (a) Velocity profile and (b) effective potential vorticity
gradient at 8 = 1 for the basic jet (18). Solid curves are for the upper
layer and dashed curves are for the lower layer. The spikes in (b)
represent delta functions in 8Q,/dy.

The basic jet has vertical shear in the central jet and
horizontal shear in the upper layer. There is also a
small amount of horizontal shear in the lower layer
in the jet wings, on account of the constraint of zero
potential-vorticity gradient.

The modes of instability that are possible for different
parameter settings can be determined by using the
necessary conditions for instability (4). The only pa-
rameter that is free after setting the profile (12) is §:
the discussion following (11) outlines the way in which
bounds on g for various types of instabilities are de-
termined. Instability due to vertical shear in the central
jet might be possible when || < 5. Instability due to
horizontal shear in the upper layer might be possible
wheén —6.67 < 8 < 3.05. There is no 8 for which the
lower layer is barotropically unstable (i.e., for which
the lower layer potential vorticity gradient satisfies the
necessary conditions by itself') and also no 8 for which
mixed instability, as defined in the previous section,
can occur.

]

-4

-6 ‘ i i

i e e v et s e

—_— n n L

o 1 2 3 1 2 3 4

FIG. 3. Stability diagram in the 8-k plane for the basic jet; “ut”

are unstable, trapped waves, ‘“‘ur” are unstable, radiating waves and
“s” are stable waves. Solid curves are marginal stability curves, ¢; =
0. Dot-dash curves are extrapolated marginal stability curves. Dashed
curves are essentially the boundaries between trapped and radiating
stabilities and are defined by Im(p) = Re(p) where p is defined after
(11¢). )
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FIG. 4. Marginal stability curves for the two-layer model of baro-
clinic instability, where the layers have equal depths and the channel
has half-width # (cf., Pedlosky, 1979). F is assumed to be 5 and (U,
— U,) = 1.0. B and k are varied. Two half-widths are used: # = 1
(dashed) and 4 = 1.7 (solid). There is one mode when # = | and
two modes when 4 = 1.7.

The solution (11) and complex phase speed c(k)
were found for all values of 8 and & for which the flow
is unstable. Fig. 3 shows the unstable region of the §-
k plane. There are two modes of instability that ba-
sically correspond to the two lowest, cross-jet, baro-
clinically-unstable modes. The mode labeled “1” is
the gravest and “2” the second cross-jet mode. (If the
Jet were a channel with rigid walls and half-width 1.7,

B=l oar 04
Cy |—— (o
4 [ i 2
/
0.2] / - 0.2
1 1 1 J A 2 J
[o] 4 2
k k
o6
2 .
B:O o /
0.4+ 0.4 / .
C L G |
0.2 0.2
L 1 1 s 1 ]
(o] i 2 3 4 o] | 2 3 4
k k
o.8r /
O.SK
B=“ -’/2\"‘
0.4r 0.4
Ce | Ci
0.2 0.2]
1 1 1 —J
0 ! 2 3 4 0 4
k

FIG. 5. The real and imaginary parts of the phase speed (c,, ¢;) as
a function of zonal wavenumber for the basic jet instabilities at
B8 =1,0and —1.
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FIG. 6. (a) Transfer of kinetic energy to the instabilities from the
upper-layer mean flow (U) and lower-layer mean flow (L) and (b)
transfer of mean-flow potential energy, for the two modes of Fig. 3
(basic jet), at 8 = 1, 0 and —1.

it wouid have the modes of instability shown in Fig.
4: these clearly correspond well with the two modes
of Fig. 3, for positive 8.) For negative 3, there is a
dashed curve where the real and imaginary parts of p
are equal:. the significance of this curve is discussed
below. '

The complex phase speeds, energy transfers and
complex meridional wavenumbers are shown in Figs.
5, 6 and 7. The most unstable eigenfunction at 8 = 0
for each of the two modes is shown in Fig. 8.

For positive g, all eigenfunctions are trapped: this
can be seen from the complex meridional wavenum-
bers in Fig. 7 and from Fig. 8 which shows eigen-
functions that are typical of all positive-8 eigenfunc-
tions. From the necessary conditions for instability,
we might have expected a horizontal shear mode for
B < 3.05 in addition to the two modes that actually
occur. In fact Mode 1 is a combination of horizontal
and vertical shear modes: the energy transfers (Fig. 6)
show a heightened kinetic energy source for the long
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waves of Mode 1. In Section 3c, we will see that the
horizontal shear mode becomes a separate mode as
the vertical shear is reduced and barotropic instabilities
become more important.

When £ is negative (westward jet), there are both
trapped and radiating eigenfunctions. The dashed curve
of Fig. 4 separates these two types. The long waves of
both modes are radiating: they have weak meridional
trapping and large meridional wavenumbers as can be
seen in Fig. 7 for 8 = —1. A relatively large value of
the imaginary part of p indicates that the free barotropic
Rossby wave in the far field is being forced [discussion
following (11c)]. Thus radiation in the form of baro-
tropic Rossby waves occurs for both Modes 1 and 2
for small k.

The growth rates of the radiating waves are com-
parable to those of the trapped waves (Fig. 5) when 8
is negative. The radiating waves of Mode 1 are unstable
to # = —5 and are thus associated with vertical shear
instability (from the necessary conditions for insta-
bility) while the radiating waves of Mode 2 are unstable
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amplitude 4, and (b) lower-layer amplitude 4,. (c) Upper-layer momentum flux u'v’ (solid),
lower-layer momentum flux (long dash), heat flux @,¢,, (short dash):

to 8 = —6.67 and are thus associated with horizontal
shear instability. The trapped portion of Mode 1 is a
combination of vertical and horizontal shear insta-
bilities: note the contortions in the stability diagram
at 8 = —5. Energy transfers (Fig. 6) are dominated by
the baroclinic instability mechanism for —5 < 8 < 0.
For —6.67 < 8 < —35, the necessary conditions for
baroclinic instability are not satisfied but those for
barotropic instability are: the energy source here is the
mean-flow kinetic energy.

The radiating eigenfunctions are basically barotropic
in the far field (Fig. 9) because only the barotropic
Rossby wave in the far field is excited by the instability,
regardless of whether the instabilities are fed by mean
kinetic or potential energy. In Fig. 10, the phase speeds
of the far-field baroclinic and barotropic Rossby waves
are shown as a function of k for / = 0 and oo. The
instability phase speeds from Fig. 5 are replotted to
show that the phase speed and wavenumber match
only the barotropic Rossby wave.

For both positive and negative 3, the basic jet is
dominated by baroclinic instability: it has two unstable
modes, both of which are basically vertical shear modes.
The expected horizontal shear mode is merged with
one of the vertical shear modes, affecting mainly its
long wave behavior. The eastward jet does not radiate:
although slightly negative phase speeds are possible
with non-zero 8 (Pedlosky, 1979) from the semi-circle
theorem, and although instabilities were found with
slightly negative phase speeds (Fig. 5), none of the
instabilities was radiating by any of the radiation cri-
teria. This could not be predicted in advance. Tung
(1981) showed that for barotropic instability the phase
speeds of all marginally stable waves must be greater
than Uy, even if some instability phase speeds are
negative: if this result carried over to the present case,
it would rule out any radiating waves. However, Tung’s
result does not hold for two-layer baroclinic instability
(Pedlosky, 1964) or for Green’s model (Garcia and
Norscini, 1970). There is thus no way confidently to

05[-

FIG. 9. Complex amplitude of radiating eigenfunction of the basic jet at § = —1, as in Fig. 8.
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FIG. 10. Barotropic and baroclinic Rossby wave dispersion relations
at 8 = 1 for/ = 0 and / — oo. The shaded regions indicate where
all Rossby waves lie. Superimposed on the diagram is ¢, of the west-
ward basic jet (8 = —1) from Fig. 5.

predict a lack of radiating instabilities for the eastward,
baroclinic jet, although they seem rather unlikely.

The westward jet has vigorously radiating modes in
addition to trapped instabilities. One set of radiating
waves (Mode 1) is associated with the horizontal shear
while the other is associated with the vertical shear,
according to their S-cutoffs and the 'necessary condi-
tions for instability for identification.

b. Eastward, radiating jets

The eastward jet described in the previous section
had no radiating solutions because the wavenumber
and phase speed of its instabilities were unable to match
the wavenumber and phase speed of ambient Rossby
waves in the far field. The westward jet, on the other
hand, had a wide range of radiating instabilities, with
growth rates nearly comparable to the growth rates of
the trapped waves. This is important in itself because
it indicates that westward currents are more susceptible
to radiation than eastward currents. Predominantly
eastward jets can also radiate if slightly modified. The
two simplest changes are to allow vertical shear in the
far field and to include westward flow beneath the jet,
in the lower layer. Both modifications result in greater
overlap of instability and far-field Rossby-wave phase
speeds. The results of such modifications are discussed
briefly in this section. A more complicated change
would be to allow westward flow in side lobes north
and south of the main eastward jet—such a flow may
be more realistic as far as the Gulf Stream or Kuroshio
are concerned.

The three modified eastward jets are shown in Fig.
11. In addition to the types of instability which were
possible for the basic jet, there can also be baroclinic
instability in the far field when there is vertical shear
there. The baroclinic instability modes have rather low
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growth rates and are stabilized by much lower values
of 8 than the jet instabilities. It is conceivable that they
might be important in radiation of jet instabilities at
low 3; however, empirically it was found that they are
not involved in radiation of the jets considered and
that only neutral waves of the far field match to jet
instabilities. Apparently the additional constraint of
matching ¢; in addition to k and ¢, is too strong.

1) EASTWARD JET WITH POSITIVE VERTICAL SHEAR
IN THE FAR FIELD

We look first at the profile with weak, positive ver-
tical shear in the far field (Fig. 11a). The flow is identical
to (12) and Fig. 2, except that Uy, = 0.15. Only positive
@ is considered. The necessary conditions for instability
of the jets’ vertical shear are unchanged: instability
might be possible when 8 < 5. Because the horizontal
shear of the upper layer is somewhat reduced, instability
in the upper layer might occur only when § < 2.05.
Instability of the far field vertical shear might occur
when 8 < 0.75.

All free waves in the far field, both neutral and un-

stable, have real phase speeds less than Uy, = 0.15, as

shown in Fig. 12. There are two waves for each total
wavenumber evolved from the barotropic and baro-
clinic Rossby waves in the absence of vertical shear.
With vertical shear, the barotropic wave becomes bot-
tom-intensified. Both retain their baroclinic or baro-
tropic structure at low wavenumber. When the far field
is locally stable, e.g. 8 > F(Uy; — Uyy), the phase speed
range for the surface-intensified mode is (U; + U,)/2
to U,, and for the bottom-intensified mode, it is —oo
to U,. When the far field is unstable, both waves can
have positive phase speeds. According to the semicircle
theorem, jet instability phase speeds lie between the

a) b) ,

Y

i o - N uw
e

FIG. 11. Three modified eastward jets: (a) with positive vertical
shear in Region III, (b) with negative vertical shear in Region III,
(c) with a weak, westward undercurrent.



2170

FiG. 12. Rossby wave dispersion relation for a fluid with two layers
of equal depth and vertical shear (U; — U,) = 0.15. The phase speed
is shown as a function of k at / = 0 for (a) 8 = 0.1 and (b) # = 1.0.
Notice that the phase speed is complex for 8 = 0.1. The solid curves
are the real part and the dashed curves the imaginary part of c.

minimum flow speed, minus a small correction for 3,
and the maximum flow speed of the entire flow. Thus
both free waves of the far field can be forced when
B8 < F(Uy, — Up,) but only one wave, the baroclinic
or surface-intensified wave, can be forced when
B > F(Uy — Up). )

The unstable waves for the jet were found. The sta-
bility diagram is shown in Fig. 13. It is much more
complicated than Fig. 3 because radiating instabilities
now exist for positive 8. The two modes of the basic
eastward jet are present and labelled as in Fig. 3. The
trapped instabilities, indicated “ut”, are vertical shear
modes of the central jet and are nearly identical to the
basic eastward jets’ instabilities. Their real phase speeds
decrease as 8 increases. Therefore the trapped modes
become radiating at high 8 since it is now possible to
force the free waves of the far-field when phase speeds
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fall beneath U,; = 0.15. This transition is indicated
by the short-dashed curves, where the real and imag-
inary parts of the far field y-wavenumber are equal.
Two additional, radiating modes were found which
may be associated with the horizontal shear: the growth
rates were so low, however, that full determination of
vertical curves was not possible. These are not shown
in Fig. 13.

The phase speed and growth rates at 8 = 4 are
shown in Fig. 14. Growth rates fall off precipitously
where the long-dashed curves in Fig. 13 are intersected:
these were the neutral stability curves, ¢; = 0, for the
corresponding trapped modes of the basic jet (Fig. 3).
However, growth rates do not tend to zero at the ex-
pected neutral curves but reach a low value in the
regions indicated “rd” (radiating, destabilized). The
waves in these regions of the stability diagram were
neutral in Fig. 3, but are now destabilized by the jet:
a large area of the stability diagram between the old
neutral curves and the maximum g allowed by thé
necessary conditions for instability is destabilized.
Thus, two types of radiating instability are found: jet
instabilities that are trapped in the basic jet but satisfy

j o
=
1

rd &

FIG. 13. Marginal stability curves in the -k plane for the eastward
jet with positive vertical shear in the far field, illustrated in Fig. 11a.
The long-dashed curves are loci of Re(j) = Im(j). Notation is as
in Fig. 3 with the addition of short-dashed curves labeled “¢; = .01"
which separate radiating waves with rather large growth rates from
those with uniformly low growth rates. The latter are referred to as
destabilized Rossby waves and are labeled “rd” in the diagram.
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FI1G. 14. (a) ¢, and (b) ¢; of the unstable modes for the eastward
jet with positive vertical shear in the far field, at 8 = 4. ¢; is smalil
but nonzero at high k for Mode 2 and for low and high k for
Mode 8.

the phase speed condition in this modified flow and
a large range of formerly neutral, modified Rossby
waves that are destabilized by the jet. The radiating
instabilities do not involve the locally, baroclinically
unstable waves of the far field (Region III). only the
neutral waves of the far-field are “forced” by the jet
instabilities.
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The vertical structure of the radiating waves depends
on which free waves are excited in the far field. All
radiating waves of this particular flow excite only one
wave, the wave that is baroclinic at low total wave-
number and surface-intensified at high total wave-
number. The total wavenumber turns out to be large
for all radiating waves, so the far field structure is
generally surface-intensified. A radiating wave is shown
in Fig. 15. Its most important aspect, in addition to
slow meridional decay, is surface-intensification. The
Reynolds stress extremum in the surface layer is farther
from the jet than in the lower layer where the unstable
wave does not propagate well.

To.summarize the results for the eastward jet with
positive vertical shear in the exterior region, two basic
modes are present in both nonradiating and radiating
jets. Both modes have large growth rates and strongly
trapped solutions which draw energy mainly from the
vertical shear of the central jet. With positive vertical
shear in Region III, some of these waves (those with
¢, < Up; and that are near the neutral curve) radiate.
Waves with ¢, < 0.15 and that fall on the neutral curve
for the nonradiating jet are no longer stable but have
small growth rates and connect to a large range of
destabilized Rossby waves. Although there is baroclinic
instability in Region III when 8 < 0.75, the locally
baroclinically unstable waves are not involved in ra-
diation of the central jet instabilities in this linear the-
ory. Destabilized Rossby waves exist in the 8-k plane
wherever modified Rossby waves exist with phase
speeds, ¢,, that are determined by the jet if the necessary
conditions for instability are satisfied. In other. words,

b e c
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F1G. 15. A radiating eigenfunction at 8 = O for the jet with eastward vertical shear in the far
field. (a) Real (solid) and imaginary (dashed) parts of the upper-layer amplitude and (b) lower-
layer amplitude. (c) Upper-layer momentum flux (solid), lower-layer momentum flux (long dash)

and heat flux (short dash), as in Fig. 8.
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even though Rossby waves exist for all wavenumbers
k, the jet does not select the phase speeds of the Rossby
waves at high zonal wavenumber for destabilization.
Thus there is a distinct short wave cutoff for the de-
stabilized waves. The mechanism whereby a particular
phase speed is selected for destabilization is unclear.

2) EASTWARD JET WITH NEGATIVE VERTICAL
SHEAR IN THE FAR FIELD

A second, simple modification of the basic eastward
jet is illustrated in Fig. 11b, where the only change
from the basic jet is the inclusion of weak, negative
vertical shear in the far field (Up; = —0.15). Again the
far field can be baroclinically unstable for 8 < 0.75,
although these instabilities are not linked to jet insta-
bilities in the linear theory. The slight increase in hor-
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FIG. 16. Free-wave dispersion relations for a fluid with two layers
of equal depth with vertical shear (U, — U,) = —0.15. The phase
speed is shown as a function of k for / = 0 for (a) 8 = 0.1 and (b)
B8 = 1.0. The solid curves are the real part and the dashed curves
the imaginary part of c.
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FIG. 17. Marginal stability diagram in the 8-k plane for an eastward
jet with negative vertical shear in the far field, as illustrated in Fig.
11b. Notation is as in Fig. 13 with the addition of dotted lines in
Modes ! and 3 which indicate that the radiating waves of Mode 1
at low ( are continuous with radiating waves associated with
Mode 3.

izontal shear in the upper layer increases the range of
8 which might be barotropically unstable, for 8 < 4.04.
All free waves in the far field have negative phase
speeds, as illustrated in Fig. 16 for 8 = 0.1 and 1.0.
With negative shear, the formerly short, baroclinic
Rossby waves become bottom-intensified and the short,
barotropic Rossby waves become surface-intensified.
When § > F(Uy, — Up,), only the mode which is baro-
clinic at long wavelengths and bottom-intensified at
short wavelengths has phase speeds between U, and
Umax Of the whole profile, so it is probable that only
this mode will be involved in jet radiation.

The stability diagram for this profile is shown in
Fig. 17. It is divided into three parts, showing the two
familiar modes and an additional mode. Modes 1 and
2 are vertical shear modes of the central jet and are
stabilized at the 8 defined by the necessary conditions
for instability. The additional mode is associated with
the horizontal shear in the upper layer since it is sta-
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FIG. 18. (a) ¢, and (b) ¢; at 8 = | for the instabilities of the eastward
jet with negative vertical shear in the far field. ¢; of Mode 3 is small
but nonzero.

bilized by 8. of about 4 and has the cusp at 8, associated
with barotropic instability of these Rayleigh-type pro-
files (Talley, 1983). The occurrence of this mode results
from increased horizontal shear in the upper layer.
As 8 — 8., the real phase speed of each mode tends
to the minimum flow speed in the portion of the flow
responsible for the instability. Thus, the phase speed
of central-jet vertical shear modes tends to 0. The phase
speed of upper-layer, horizontal shear modes tends to
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—0.15. Thus only the horizontal shear mode is expected
to radiate. As seen in the stability diagram (Fig. 17),
Mode 2, a vertical shear mode, does not radiate. Mode
1 is more complicated: at low 8 and low wavenumber,
this mode incorporated a horizontal shear mode in
the basic jet profile and does so here also. Hence there
are radiating instabilities along this boundary, which
was a neutral curve in the basic jet. Mode 3, the new
mode, is a horizontal shear mode and has associated
radiating instabilities.

The stability diagram is complicated by the long
wave behavior of Modes 1 and 3: when S is 2, say,
the radiating instabilities at low wavenumber are as-
sociated with the trapped instabilities of Mode 1, with
a neutral curve just above k = 3. However, at 8 = 3,
the low-wavenumber radiating instabilities connect
with the trapped instabilities of Mode 3 at much higher
wavenumber. This trade is indicated on the stability
diagram by a dotted line. The orientation of the line
is arbitrary but its end point at 8 and k of about 2.5
and 1.8 is well-defined. Thus, although both Modes 1
and 3 have associated destabilized Rossby waves (these
radiating instabilities), there is only one set of radiating
instabilities for this profile, apparently associated with
the upper-layer horizontal shear.

Dispersion relations for the three modes are shown
in Fig. 18. The long waves of Mode 1 and all of Mode
3 are radiating: the phase speeds are between —0.1 and
0. Hence from Fig, 16, it is clear that only the baroclinic
or bottom-intensified wave in the far field will be in-
volved in radiation. In fact, the total wavenumber in
the far field, k? + I3, is always large for the radiating
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FI1G. 19. A radiating eigenfunction at 8 = 1 for the jet with negative vertical shear in the far
field. (a) Real (solid) and imaginary (dashed) parts of the upper-layer amplitude and (b) lower-
layer amplitude. (c) Upper-layer momentum flux (solid), lower-layer momentum flux (long dash)

and heat flux (short dash), as in Fig. 8.
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waves so they are all bottom-intensified. A represen-
tative, radiating eigenfunction is shown in Fig. 19.
This wave draws its energy from the horizontal shear
of the upper layer but propagates in the lower layer
in the far field. Hence its amplitude in the upper layer
is large in the shear zone and negligible elsewhere,
while its amplitude in the lower layer is large in the
far field. :

3) EASTWARD JET WITH WESTWARD UNDERCUR-
RENT

The third, simple modification of the basic flow is
to include a weak, westward undercurrent in the lower
layer, U, = —O0.1, as illustrated in Fig. 11c. The free
waves of the far field are once again baroclinic and
barotropic Rossby waves. Radiation might be possible
because the flow in the lower-layer jet is westward with
respect to the far field. Evaluating the necessary con-
ditions for instability, we find that vertical shear in-
stability in the central jet might occur when 8 < 5.5;
horizontal shear instability might be possible in the
upper layer when 8 < 2.94; in the lower layer, hori-
zontal shear instability and mixed instability, due to

6 G
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FiG. 20. As in Fig. 13 but for an eastward jet with weak westward

undercurrent, as illustrated in Fig. 11c. Note that there are now -

dashed curves for both p and j: both free waves are forced in the
far field.
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FI1G. 21. (a) ¢, and (b) ¢; at 8 = 5 for the unstable modes of eastward
jet with weak westward undercurrent. Again, the very small values
of ¢; shown here are nonzero.

horizontal gradients of 8 — FU,, might occur for
B <5.5.

Radiation may be possible if unstable waves have
negative phase speeds. As 8 increases to the appropriate
8. for each mode, the phase speed decreases to the
minimum speed of its associated part of the flow profile.
Each unstable mode is associated with a particular part
of the profile: the vertical shear modes with the central
jet flow, which has a range of —0.1 to 1, and the hor-
izontal shear modes with the upper layer velocity,
which has a range of 0 to 1, and with the lower layer
flow, which has a range of —0.1 to 0. Thus for this
profile, we would expect the vertical shear modes of
the central jet and the lower-layer horizontal shear
mode to be much more likely to radiate than the upper-
layer horizontal shear mode.

The stability diagram is shown in Fig. 20. Once
again, the slight modification of the jet has left Modes
1 and 2 nearly unaltered. There are no separate hor-
izontal shear modes associated with either the upper
or lower layers, although the long wave behavior of

" Mode 1 is influenced by the presence of horizontal

shear, just as for the jets already discussed. The nec-
essary condition for vertical shear instability is sufficient
as before. There are radiating instabilities near the
neutral curves of the basic jet (Fig. 4) on the long wave
side of Mode 1 and at high § for both modes. As
before, the neutral waves themselves are destabilized
and there is a large range of formerly neutral, far-field
Rossby waves that are now unstable. The stability dia-
gram shows no short-wavenumber cutoff for these ra-
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(A)

FIG. 22. (a) Transfer of energy from the mean flow of the upper
layer (dashed) and lower layer (solid) and (b) transfer of mean-flow
potential energy to the perturbations, at 8 = 5, for the eastward jet
with weak westward undercurrent.

L. D. TALLEY

2175

diating waves because growth rates are very low and
the instabilities were difficult to find at higher k. How-
ever, short-wave cutoffs were found for the radiating
instabilities of the other jets so there is no reason not
to expect a cutoff here.

Dispersion relations are shown in Fig. 21 at 8 = 5.
All instabilities at 8 = 5 radiate: their phase speeds
are negative and they satisfy the definition of radiation.
Here we can see graphically one difference between
the radiating instabilities that are basically unstable
modes of the jet and those that are destabilized Rossby
waves: the growth rates of the basic instabilities are
good-sized although all are radiating while the growth
rates of the destabilized Rossby waves are very small.

The energy transfers at 8 = 5 are shown in Fig. 22.
This B is considerably in excess of the §. associated
with the upper-layer horizontal shear instabilities, so
the perturbations grow at the expense of the mean-
flow potential energy. Indeed, all energy transfer to
the perturbations is from the potential energy of the
mean flow while the perturbations actually lose kinetic
energy.

Radiating instabilities for this profile involve both
the barotropic and baroclinic Rossby waves in the far
field. Since the two waves have different meridional
wavenumbers, the resulting eigenfunction alternates
between surface- and bottom-intensification. Fig. 23
shows this behavior. Note that the eigenfunction is
largest in the jet center, probably because the energy
source is the vertical shear of the central jet. Outside
the jet, the momentum flux also alternates between
surface- and bottom-intensification while the heat flux
is slightly negative but small.
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FI1G. 23. As in Fig. 19 but at 8 = 5 for the eastward jet with weak westward undercurrent.
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c. The effect of selected parameter changes

There are a large number of parameters in the two-
layer jet, which affect the relative importance of baro-
tropic and baroclinic instability and the structure of
the instabilities. Systematic changes in a basic profile
were made in the previous section to understand the
circumstances in which a simple jet radiates. A thor-
ough exploration of parameters is not made here be-
cause there are too many possibilities. Discussed briefly
here are 1) the effect on the radiating modes of zonal
boundaries far from the jet, 2) the effect of a weak
eastward jet in the lower layer which decreases the
central jet vertical shear, thus increasing the barotropy,
3) changing the width of the shear zones, which affects
the amount of kinetic energy transfer and the number
of barotropic instability modes and 4) changing F,
which affects the amount of potential energy transfer
and the number of baroclinic instability modes.

1) EFFECT OF ZONAL BOUNDARIES

Imposition of zonal boundaries at a large distance
compared with the jet width has no effect on the
trapped instabilities since their influence does not ex-
tend far beyond the jet. However, boundaries change
the behavior of radiating instabilities which have large
meridional decay scales by setting up standing waves.

Figure 24a is an expanded version of the imaginary
part of the phase speed of the radiating mode associated
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-FIG. 24. ¢, for long, radiating waves of Mode 1 (Fig. 20) for (a)
an infinite 8-plane and (b) a channel with walls at H = +100.
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FIG. 25. Marginal-stability curves in the 8-k plane for a jet identical
to Fig. 2 but with U}, = 0.5. Only positive 8 is shown.

with Mode 1 in Fig. 20. No boundaries were used in
the calculations of the previous section. When bound-
aries are included at H = =100, there are well defined
ranges of zero ¢; (Fig. 24b). Each lobe of positive ¢;
corresponds to a separate standing mode of the entire
channel. A similar observation of the effect of bound-
aries on radiating Kelvin—Helmholtz instabilities was
made by Lindzen and Rosenthal (1976): when fluid
above and below a shear layer was stratified so that
internal waves could be supported, radiating instabil-
ities were observed. With lateral boundaries, the dis-
persion relation was modified in the same way as in
the present case.

2) EFFECT OF VARIABLE VERTICAL SHEAR IN THE
CENTRAL JET

Changes in the vertical shear in the central jet should
shift the relative importance of baroclinic and baro-
tropic instability. Fig. 25 is the stability diagram for a
jet identical to Fig. 2 but with Uy, = 0.5 instead of 0.
The decrease in vertical shear in the central jet from
U — U, =10to U, — U, = 0.5 results in an obvious
decrease in importance of the vertical shear modes. It
also results in separation of the main horizontal shear
mode from the vertical shear Mode 1. There is a much
larger proportion of kinetic-energy transfer to this hor-
izontal shear mode than to Modes 1 and 2, although
the mean-flow potential energy is still the dominant
source of energy. Modes 1 and 2 were identified as
vertical shear modes by their associated 8, and the
similarity of their marginal stability curves to those of
the first two baroclinically unstable modes for a chan-
nel. The marginal curve of Mode 3 terminates at the
B. predicted for barotropic instability of the upper layer
and has the cusp at 3. typical of horizontal shear modes.

3) EFFECT OF NARROWER SHEAR ZONES

Talley (1983) discussed the effect of narrower shear
zone widths (D — 1), and hence increased horizontal
shear, on barotropic instabilities. A top-hat jet is un-
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stable for all 8 and k. As shear zone widths increase,
instabilities are restricted to smaller ranges of § and
k. The number of barotropically unstable modes also
decreases, although there is always at least one unstable
mode no matter how large D becomes. Such behavior
should extend to the horizontal-shear modes of two-
layer jets. Vertical-shear modes should be much less
affected by varying shear-zone widths.

We examine briefly the effect of narrowing the shear
zones of the jet discussed in the immediately preceding
section, which had Uy, = 0.5. The shear zone widths
are decreased from 0.7 to 0.5. The stability diagram
is shown in Fig. 26. The vertical shear modes (1 and
2) are nearly unaffected. However, 8. for the horizontal
shear mode (3) is now much higher and there are two
new horizontal shear modes. This is in keeping with
the results of Talley (1983) and strengthens the iden-
tification of Mode 3 as a horizontal shear mode. Al-
though the energy transfers are not shown, it was found
that the vertical shear modes were dominated by po-
tential energy transfers; the source of energy for the
horizontal shear modes for 8 < 2.5 was largely potential
but nearly all kinetic for 8 > 2.5.

ut S

FI1G. 26. Marginal-stability curves for a jet identical to Fig. 2 but
with Uj; = 0.5 and D = 1.5 rather than 1.7. There are two vertical-
shear modes (1 and 2) and three horizontal-shear modes (3, 4
and 5).
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FIG. 27. Marginal-stability curves in the F-k plane for the basic
jet, Fig. 2, at 8 = 0. The modes are the same as the two modes of
Fig. 3.

4) EFFECT OF CHANGES IN F

Hart (1974), Holland and Haidvogel (1980) and Or-
lanski (1969) examined the effect of changing strati-
fication on baroclinic jets, so this discussion is brief.
As the density contrast between the layers is reduced,
Fincreases, the interface becomes more pliant and the
flow becomes more baroclinically unstable. When F
is zero, there is no baroclinic instability. The basic jet
profiles, at F = 5, had two unstable modes. Mode 2
was a vertical shear mode while Mode 1 was composed
of a horizontal- and a vertical shear mode which sep-
arated when Uy, = 0.5. The stability diagram for the
two modes at 8 = 0 as a function of F and k is shown
in Fig. 27. Mode 1 is unstable for all F: its existence
at low F can only be due to horizontal shear, strength-
ening the characterization of Mode 1 as a combined
horizontal-vertical shear mode. Mode 2 is stable at
low F: it is solely a vertical shear mode. (Note that
there is only one horizontal shear mode when
D = 1.7 for a barotropic jet, so only one horizontal
shear mode is found here.) A similar result was found
by Hart (1974): he found instabilities even at very low
values of F, due entirely to the horizontal shear of the
upper layer jet.

d. Model summary

The linear stability of baroclinic, zonal jets on the
B-plane was explored: it was found empirically that it
was possible to predict the existence of radiating so-
lutions based on the Rossby-wave dispersion relation
in the far field of the jet and the necessary conditions
for instability (which were sufficient for profiles con-
sidered here although they are not guaranteed to be
sufficient for general cases). Because the flows had ver-
tical and horizontal shear, both baroclinic and baro-
tropic instability were possible. Identifiable horizontal
and veritical shear instabilities were found, each for
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parameter ranges given by the hecessary condition for
instability.

The basic eastward jet has two unstable modes,
which were identified as the two gravest, cross-jet,
baroclinically unstable modes. The gravest mode,
Mode 1, also incorporated an upper-layer horizontal
shear mode which strongly affected the long wave be-
havior, particularly the shape of the neutral curve and
the phase speeds. (The horizontal shear mode separated
from Mode 1 when an eastward jet was gradually in-
troduced in the lower layers.) All instabilities of the
eastward jet were trapped and were predominantly
vertical shear modes. In contrast, the westward jet ba-
sically had two modes, but (1) horizontal shear insta-
bility was more important and (2) there were radiating
instabilities associated with two sources of energy, the
upper-layer kinetic energy and the potential energy of
the central jet. The growth rates of the radiating in-
stabilities were comparable to those of the trapped
instabilities.

The instabilities of the eastward jets with small
modifications were very similar to those of the basic,
eastward jet with the important addition of large ranges
of unstable, radiating waves. These instabilities were
separated into 1) unstable waves of the basic, eastward
jet which radiate due to modification of the jet structure
and 2) a large new class of unstable solutions which
are basically Rossby waves of the far field, destabilized
by the jet. Growth rates of radiating instabilities 1)
and destabilized Rossby waves 2) are lower than growth
rates of trapped instabilities (McIntyre and Weissman,
1978). However, growth rates of radiating instabilities
were found to depend strongly on the allowed range
of phase speeds for radiation: hence, the radiating in-
stabilities of predominantly eastward jets had very low
growth rates while the growth rates of radiating insta-
bilities of the westward jet were comparable to those
of trapped instabilities.

The energy source for all instabilities was, as ex-
pected, a mixture of mean-flow potential and kinetic
energy. For the particular jets considered here, baro-
clinic instability was the dominant mechanism even
for modes identified with the horizontal shear. If the
necessary conditions for baroclinic and barotropic in-
stability were both met, there was energy transfer to
the perturbations by both mechanisms. If the necessary
conditions for, say, barotropic instability were not sat-
isfied but those for baroclinic instability were, the per-
turbations gained energy from the mean-flow potential
energy and lost it to the mean-flow kinetic energy.

The horizontal structure of the instabilities depended
on the energy source: if it was the vertical shear, max-
imum amplitude occurred in the jet center while if it
was the upper-layer horizontal shear, maximum am-
plitude occurred in the shear zone. Outside the jet,
the vertical structure of trapped waves was usually
barotropic. The vertical structure of radiated waves
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depended entirely on how the phase speed condition
was satisfied, i.e., which of the two free waves was
forced.

4. Gulf Stream comparison

One miotivation for the study of radiating instabilities
was the structure of the eddy energy field of the Gulf
Stream. The observed, highly energetic eddy field in
the Gulf Stream and its broad decay to the south can
only be due to instabilities of the Gulf Stream and its
recirculation. Two possible sources of the observed
eddy field are Gulf Stream rings (Flierl, 1977), which
result from Gulf Stream instabilities, and the finite
amplitude extension of radiating instabilities. It is as-
sumed in the following comparison that radiating in-
stabilities are the eddy source and then seen to what
extent this assumption is consistent. However, it is
difficult to compare linear stability results with observed
fluctuations because the appropriate basic flow is un-
known. The approach here is to use the gross observed
characteristics of the energy distribution to suggest the
correct basic flow. If the model is appropriate, it should
then yield reasonable frequencies, wavenumbers,
Reynolds stress and heat flux for the eddy field.

We begin with a short summary of the observations,
followed by a comparison of model and results. Ob-
servations made along 55°W in the POLYMODE Ex-
periment and at the MODE site are used. Schmitz
(1978, 1980, 1982) has published the vertical and me-
ridional distributions of mean flow, kinetic energy and
Reynolds stress along 55°W. There were no moorings
directly in the Gulf Stream except at 4000 m. The
mean flow south of the mean Gulf Stream axis was
characterized by nearly barotropic eastward flow at
37°50'N, nearly barotropic westward flow at 36°N
and weak flow of indeterminate sign south of 35°N.
At 4000 m beneath the mean Gulf Stream axis there
was a westward flow, although it is not clear that the
instantaneous westward flow was beneath the instan-
taneous Gulf Stream. .

The vertical distributions of eddy kinetic energy at
37°30’N, 55°W and at the MODE site (28°N, 70°W)
were compared by Schmitz (1978). The POLYMODE
mooring is about 200 km and the MODE mooring is
about 800 km from the Gulf Stream. Mesoscale fluc-
tuations (50 to 100 days) were weakly surface-inten-
sified and decayed quickly away from the Gulf Stream
maintaining their vertical structure. Secular fluctua-
tions (100 to 1000 days) decayed much more slowly
and became strongly surface-intensified away from the
Gulf Stream.

The momentum flux along 55°W (Schmitz, 1982)
was positive south of the Gulf Stream and appeared
to cross zero in the Gulf Stream, although moorings
were not placed in the Gulf Stream. The maximum
momentum flux occurred farther south in the ther-
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mocline than in the deep water. The momentum flux
was antisymmetric with respect to the current axis:
although data to support this at 55°W are only available
at 400 m, it is true at shallower depths in the Kuroshio
(Schmitz, 1982).

Hogg (personal communication, 1982) calculated
the heat flux v'7T” for POLYMODE Array 2 at 600
and 4000 m. The abyssal heat flux was negative and
small throughout the array. The thermocline heat flux
was large and southward at 37°30’N, in the westward
mean flow south of the Gulf Stream. South of 35°N,
the thermocline heat flux was nearly zero.

A basic flow must be chosen for the model in order
to compare it with data. The observed mean flow is
not necessarily the best choice of basic state since it
has already been altered by instabilities. Thus the
structure of observed fluctuations is used to define a
reasonable basic flow. The fast meridional decay of
the mesoscale fluctuations (Schmitz, 1978) leads us to
identify them as trapped disturbances. Weak surface-
intensification of mesoscale disturbances was observed:
if the two-layer model used here had had a shallower
surface layer, the trapped instabilities would have been
usually surface-intensified in the far field rather than
barotropic. Since the trapped modes of all models had
barotropic structure outside the jet, no further infor-
mation about the basic state is obtained from the me-
soscale fluctuations. The secular-scale fluctuations
decayed much more slowly and became strongly sur-
face-intensified far from the Gulif Stream: they can be
identified as radiating instabilities. Of the models con-
sidered, the model with weak eastward vertical shear
in the ocean interior and the one with a westward
undercurrent produced surface-intensified disturbances
in the far field.

The momentum flux in the far field for radiating
instabilities in the model with eastward vertical shear
in the ocean interior was surface-intensified (Fig. 15),
antisymmetric and had a maximum farther south in
the upper layer, just as in the observations (Schmitz,
1982; Fig. 2). Thus on the basis of Schmitz’s (1978)
Kinetic energy analysis and his momentum flux dis-
tribution (Schmitz, 1982), the best model of those few
considered here has weak, positive vertical shear in
the far field. A subtropical gyre with weak eastward
velocities south of the Gulf Stream and an intense
westward recirculation is conceivable in terms of in-
ertial circulation models (cf. Veronis, 1966) and ob-
servations (Reid, 1978) but differs from the more con-
ventional view of broad westward flow south of the
Gulf Stream (Stommel et al., 1978; Worthington,
1976). '

The present models cannot produce the observed
large, southward heat flux in the westward mean flow,
south of the Gulf Stream. This flow is an important
feature of all detailed observations and circulation
models and is lacking in the present model. The mod-
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el’s simplicity must be reappraised in light of the ob-
served heat flux and the necessity for weak eastward
flow in the ocean interior (in order to produce surface-
intensified fluctuations using this model). A possible
scenario is that the eastward Gulf Stream is unstable
to fluctuations that are strongly trapped meridionally.
The momentum flux divergence due to these waves
sets up westward side lobes that are nearly barotropic
because the tails of the trapped waves outside the Gulf
Stream are nearly barotropic. The new mean flow may
now be unstable to radiating modes because of the
intense westward recirculation. These eddy-driven
flows may themselves be unstable to instabilities with
lower growth rates, such as the radiating instabilities
that we seek. Certainly if slowly growing perturbations
can draw energy from the flow despite the presence of
more unstable waves, the relevant basic flow would
have to include the effect of the most unstable waves.

Of course it is necessary to understand the nonlinear
development of a full spectrum of waves, including
both high-growth-rate trapped instabilities and weaker
radiating modes, in order to make a truly significant
comparison of the model and observations. Questions
which must be answered are whether the weaker in-
stabilities are capable of growth alongside the most
unstable waves and what the final meridional distri-
bution of unstable waves is. Perhaps the simplest con-
clusion to be reached from this model is that when
conditions allow instabilities to radiate, they will, and
that as a result, westward flows are much more likely
to radiate energy far into the ocean interior than east-
ward flows.
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APPENDIX
Perturbation Energy Equation

The perturbation energy equation is obtained by
multiplying the potential vorticity equation for each
layer (1) by ¢, and the depth of the layer, summing
and then integrating over x and y. The summed and
x-averaged energy equation is
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dE(¢) d i (3 )
a 3y '(at )¢1y+ o=+ U P b2y
dUy ——  dU, ——
= d—yl d1x1y + _d_yz d2xP2y

+ FU, — Ud2x, (AD)

where the overbar denotes the x-average. The averaged
perturbation energy is

2
@) =5 i~ 97 +5 3 [6n + Go?)
n=1

If U, and dU,/dy are continuous, integration in y
eliminates the bracketed term in (12) since ¢,, = 0 at
y = =H. When U, and U, are discontinuous, however,
this term may be nonzero. Suppose there are discon-
tinuities in U, and dU,/dy at y = y,. Integrating the
bracketed terms in (A1) from one channel wall to the
other yields the term

[471( + U, )¢|y+¢2( + U, )4’2;1 , (A2)
y=y0

i.e., the jump in the bracketed quantity at y = yo.
Expressing ¢, in terms of normal modes, ¢,
= [®,(»)e™* + c.c.]}/2, the jump is evaluated using
the match conditions for ¢, and ¢, at y = y,. Denote
the velocities north of the jump as U, and those south
of it by U; . Then (A2) becomes

ike*at 2 (Uy — Uy) | <I’+l’ vy
4 2 Uy~

d +
+ <I>I* (U+ % c.c.}
where the asterisk denotes complex conjugation. This
can be rewritten in delta function form

ike¥at 2 rH { dU+
d <I)+ 2
2 E [ s 2

d<1>+

e W; = Un)

|U:‘. — CIZ B(y - yO)

Thus (A2) is baswally a delta-function addition to the
energy transfer term (—u'v")dU/dy in the perturbation
energy equation. If U; = Uj,, this term disappears be-
cause dU/dy no longer has delta-function behavior at
¥ = yo and the energy equation is

(U+ ) c.c.}

H JE dU, dU,
fH 6(t¢) dy = f ¢1x¢1y y + ¢2x¢2y dy
+ KU, — Us)¢1025dy.

If, however, the kinetic energy transfers are written
in the form Ud(u'v’)/3y there will be delta-function
contributions even when U, is continuous and
dU,/dy is discontinuous, in which case
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f AYUryrxny

H

—_— 0
= —[Un¢nx¢ny]yo - dyU, 'é_’ (¢nx¢ny)
-H y

Rewriting ¢ in normal mode form, ¢,(y)e™ %, and
applying the matching conditions, Eq. (A1) becomes

VE(¢) _ ke 2 U |<1>,,2 i
R

. - s
= Un)d(y — yo) — 5 f_H ayU, e (2,23 — c.c.)}

ik

+ Z eZk“’F(U. - Uz)(élq)f + ‘I’T‘I’z),

where the unsuperscripted U, and &, are the contin-
uous values of U, and ®,. There is clearly a contri-
bution to the convergent Reynolds stresses from the
profile break because u#'v’ is not continuous there.
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