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ABSTRACT

The linear stability of zonal, parallel shear flow on a beta-plane is discussed. While the localized shear
region supports unstable waves, the far-field can support Rossby waves because of the ambient potential-
vorticity gradient. An infinite zonal flow with a continuous cross-stream velocity gradient is approximated
with segments of uniform flow, joined together by segments of uniform potential vorticity. This simplification
allows an exact dispersion relation to-be found. There are two classes of linearly unstable solutions. One
type is trapped to the source of energy and has large growth rates. The second type is weaker instabilities
which excite Rossby waves in the far-field: the influence of these weaker instabilities extends far beyond that

of the most unstable waves.

1. Introduction

The large-scale eddy energy distribution in mid-
latitude oceans is highly inhomogeneous. It is quite
clear from the spatial distribution of energy (Dantzler,
1977) that intense ocean currents are the source of
a large part of the eddy energy and thus its spatial
inhomogeneity. However, the scale of meridional
decay of energy away from the zonal portions of these
currents is too slow to be accounted for by the most
unstable waves of the currents, since their decay scales
are not much larger than the internal Rossby defor-
mation radius. An explanation of the slow decay is
sought here and in an accompanying paper (Talley,
1983) in the form of *“radiating,” quasi-geostrophic
instabilities of zonal currents. These instabilities have
large meridional decay scales but somewhat lower
growth rates than the most unstable waves. It is hy-
pothesized that the fully developed eddy field in a
broad neighborhood of the currents is composed of
the most unstable, most trapped waves directly in the
current with a gradual shift to less unstable, radiating
instabilities in the far-field. Because the stability prob-
lems considered in these papers are linear, it is not
known whether this hypothesis is true. However, the
theory is qualitatively consistent with data in the
western North Atlantic (Talley).

This paper considers the stability of zonal, baro-
tropic shear-flows and jets. While the most general
currents in the ocean and atmosphere have both hor-
izontal and vertical shear, the existence of strong hor-
izontal shear in the ocean and atmosphere suggests
that in some circumstances barotropic instability may
be important. It is also useful to understand the baro-
tropic and baroclinic stability problems separately
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before combining them, as is done by Talley (1983).
Direct comparison of the theoretical results with
oceanic observations is also given by Talley.

The stability of parallel shear flow was initially con-
sidered in the nineteenth century. Piecing flow pro-
files from straight lines, Rayleigh (1879, 1880) ob-
tained analytic solutions for a variety of cases, in-
cluding shear layers and jets, with and without zonal
boundaries. He also derived a necessary condition for
instability based on the occurrence of an inflection
point in the velocity distribution (Rayleigh, 1887). A
second necessary condition for instability of parallel
shear flow was derived by Fjertoft (1950).

The stability of parallel shear flows in the presence
of a variable Coriolis parameter was first studied by
Kuo (1949). The stability of parallel shear flows on
the B-plane was also investigated by Howard and
Drazin (1964) who found analytic solutions for sim-
ple flow profiles and a neutral stability curve for the
shear flow, U(y) = tanhy. Most importantly for the
present investigation, they predicted an additional
long-wave mode for the hyperbolic-tangent flow with
non-zero .

Dickinson and Clare (1973) took up the search for
the unstable modes of the hyperbolic tangent profile
on the S-plane. They confirmed Howard and Drazin’s
suspicions, finding an additional long-wave mode
when 8 is non-zero. Moreover, they paid close atten-
tion to the horizontal structure of the instabilities and
found that the unstable waves identified with the hy-
perbolic tangent instability at 8 = 0 are strongly
trapped to the shear zone, while the unstable long
waves resemble Rossby waves in the westerly part of
the flow. They suggested that these “radiating” insta-
bilities, which have large meridional decay scales, can



JUNE 1983

be interpreted as Rossby waves over-reflected from
the shear zone.

The existence of the radiating solutions found by
Dickinson and Clare (1973) requires an ambient po-
tential-vorticity gradient (e.g., §) in the outer-field. It
also depends crucially on the overlapping of insta-
bility phase speeds and zonal wavenumbers with the
Rossby-wave phase speeds and zonal wavenumbers
of the far-field. McIntyre and Weissman (1978) dis-
cussed this phase speed condition; they also discussed
the definition and existence of radiating waves. The
definition of radiation is extended here to include
instabilities which are similar to Rossby waves in the
flow external to the energy source.

Since strict limits can be placed on instability phase
speeds (Howard, 1961; Pedlosky, 1964) and since the
Rossby-wave dispersion relation gives the phase
speeds of Rossby waves in the far-field, it is easy to
predict when an unstable flow will not radiate. Prov-

ing the existence of radiating solutions, of course, re- -

quires solving the specific problem. Instability phase
speeds must be within the range of the mean flow
speed (with a small correction due to §) and Rossby-
wave phase speeds must be westward with respect to
the mean flow. Thus, a monotonic shear layer or a
westward jet may radiate, while an eastward, baro-
tropic jet cannot radiate.

A relevant investigation of how neutral (Rossby)
waves in a flow with vertical shear can be forced by
a moving boundary was made by Pedlosky (1977).
Disturbances forced by the boundary were either
strongly trapped or purely radiating (semi-infinite
Rossby waves), depending on whether the phase
speed condition was satisfied. The present papers ex-
tend this theory to its motivating situation, namely
whether periodic instabilities of a zonal current can
excite the ambient waves of the far-field and carry
the instabilities’ energy far into the ocean interior.

In the context of Kelvin—-Helmholtz instability,
Lindzen and Rosenthal (1976) showed that, in ad-
" dition to the usual instabilities that are trapped to the
shear layer, there can be unstable, “radiating”, inter-
nal gravity waves if the buoyancy frequency in the
fluid is non-zero. This is equivalent to the existence
of a potential vorticity gradient which can support
Rossby waves in the present case.

Flow profiles are simplified using Rayleigh’s method
(1879, 1880) extended to flow on the 8-plane. Nec-
essary conditions are derived and a definition of ra-
diating instabilities is given. Unstable solutions of a
monotonically sheared flow and a thin jet are found.
When 8 is non-zero, so that there is a potential vor-
ticity gradient throughout the fluid, the instabilities
of a monotonically sheared flow and a westward jet
radiate and are basically destabilized Rossby waves.
An eastward jet cannot radiate outside the jet because
the phase speed condition cannot be satisfied.
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2. Formulation of the linear-stability program for
homogeneous, parallel shear flow

The basic formulation of the shear flow problem
is well-known. Rayleigh (1880) derived the governing
vorticity equation for non-rotating, homogeneous
flow and solved it for many simple cases. The intro-
duction of uniform rotation has no effect on the ho-
mogeneous shear-flow problem. If however, the ro-
tation is non-uniform, as it is in a spherical system
or in the B-plane approximation to the spherical sys-
tem, the stability problem is affected because the vor-
ticity gradient of the basic flow is affected. Variable
Coriolis parameter was included by Kuo (1949) and
Howard and Drazin (1964).

The fluid whose flow is examined for stability is
assumed to be homogeneous and inviscid. It is ro-
tating with angular velocity €. The local Coriolis pa-
rameter is f = 2Q sinf, where @ is latitude, whose
approximately linear variation is equal to 8;. The
flow is assumed to have small Rossby number U/fL
and is quasi-geostrophic. The velocities are written
in terms of a streamfunction ¥. The non-dimen-
sionalized potential vorticity equation for such a flow
is derived and discussed by Pedlosky (1979). It is

] ] Y s
(az \Ifyax+\I/xay)(V\I/+By) 0. (1)
A length scale L and velocity scale Uy, which are
inherent scales of the flow, have been used to non-
dimensionalize the equation. Time is non-dimen-
sionalized by LU,™". There is one non-dimensional
parameter, 8 = B,L*U,™". It is further assumed that
the velocity and stream function are composed of two
well separated parts: a mean, steady flow and infin-
itesimal perturbations on the flow. The basic flow is
assumed to be zonal and to vary only with latitude.
Thus

¥ =y + ox, p, 1)

oy 0d¢
= + Y = e e —
u=Uy) +u(x,y1) ay ay [’

v= v’(‘x’y5 t)=¢x

where ¢ < . Linearizing the potential vorticity equa-
tion (1) to include only terms of order |¢|, we obtain

a a
(5} + U(y) Ex)vzd) + (8 — Uyy) =0.

The domain of the flow is infinite in the x-direction
and may be bounded by walls at y = + H. The bound-
ary condition at y = +H is that v = ¢, = 0. If
H — o0, the boundary condition is that the solution
be bounded at infinity, or equally that the energy flux
be outward at infinity.

Seeking normal mode solutions



974

B(x, y, 1) = A(y)e™ =,

where k is real and A(y) and ¢ are complex, the po-
tential vorticity equation becomes the familiar

(Uy) - C)(*A - sz) +B-Upd=0. (2

Particular attention is focused on solutions to this
equation with complex c.

The solution of (2) is made dlfﬁcult by the possible
presence of critical layers, where ¢ = U(y,), within the
flow. If the disturbance is growing, so that ¢; # 0, the
problem is non-singular on the real line and has a
well-behaved solution. If the flow velocity U changes
continuously with y, the only allowed neutral modes
must have phase speeds either outside the range of
the flow speed or equal to the flow speed where the
potential vorticity-gradient vanishes (Kuo, 1949).

In order to avoid problems associated with critical
layers, Rayleigh (1879) introduced a way of approx-
imating flow profiles (with 8 = 0) which significantly
simplified the finding of solutions. Rather than allow
the flow to vary continuously in y, with isolated zeros
of the vorticity gradient, he required that U,, vanish
everywhere except at isolated points, by approximat-
ing the flow with straight lines, U,, = 0. This effec-
tively compresses non-zero Uy, into delta functions
at points where the straight lines meet.

This method can be extended to the $-plane by
approximating the flow as

U=a
or
B— U, =0, (3)

where a is a constant. Thus, the potential vorticity
gradient does not vanish everywhere but is equal to
8, the planetary vorticity gradient, where U is inde-
pendent of y. Solutions to (2) are then found in each
separate region of the flow. Matching conditions on
the pressure and normal velocity are applied at each
profile break. The matching conditions, originally
due to Rayleigh (1880), are that the displacement of
the material (zonal) interface between the two regions

of the flow be the same in both regions on either side
~ of the interface, and that the tangential pressure gra-
dient at the interface be given equally on both sides
of the interface. If the profile break occurs at y = 0
for instance, the matching conditions are

2] -
[(U—c)———A‘Z,;]J =0,

where the square brackets indicate the jump in the
quantity from y = 0 + e to y = 0 — e. Both matching
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conditions are unaffected by non-zero 8. Application
of these matching conditions and the appropriate
boundary conditions to the solutions in each flow
region gives the full solution and the complex phase
speed c(k).

3. Stability theorems

There are four useful theorems which yield infor-
mation about the stability of a particular flow U(y)
before the detailed stability analysis is undertaken.
They are well-known, so only a brief statement of
each will be given here with extensions to “broken
line” profiles. The first two are necessary (but not
sufficient) conditions for instability. In their non-g-
plane forms, they are Rayleigh’s inflection point theo-
rem (Rayleigh, 1880) and the Fjertoft extension of
this theorem (Fjertoft, 1950). The Rayleigh theorem
for homogeneous flow was extended to the S-plane
by Kuo (1949). An extension of Fjertoft’s theorem
to the B-plane, including stratification, was made by
Pedlosky (1964). These two theorems in their normal
mode, 8-plane form, for unstratified flow, are

H 4> 90 _
cif d IU_ clz ay ’ (6)
4P 0Q
f dyi = U >0 @)

where dQ/dy = (8 — U,,). The integrals are over the
domain of the flow (—H, H), where H can be ex-
tended to infinity. The first theorem states that, if the
growth rate of the perturbation is to be non-zero, the
potential vorticity gradient (8 — U,,) must change
sign somewhere in the flow. The second theorem says
that the product U(8 — U,,) must be positive some-
where in the flow. [Taking the two theorems together,
(U — a)B — U,,) must be positive somewhere for
instability to be possible, where a is any constant.]
When the flow U(y) or its derivative dU/dy are
discontinuous, there are slight changes in the neces-
sary conditions (6) and (7). The potential vorticity
equation (2) is multiplied by A*/(U — ¢) and inte-
grated over the entire y domain. The real and imag-
inary parts are separated to give the two necessary
conditions for instability. For example, if there is a
simple discontinuity in U(y) or its derivative at y

= o, the integrated equation is
yo- A2 9

e+ [y up o0
-H

—1 4712 —_ 1.2 2+
{ar e AP

lAIZ aQ}
} ] q’ 2 k2 4 2 } = 0 8

Yo+

where dQ/dy = 8 — U,, and where the square brackets
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denote the jump in the bracketed quantity across y;.
Primes denote differentiation with respect to y. Eval-
uation of the jump using the matching conditions
(4) and (5) yields

—[A* Ay, = A*A

U+—c*{U_—c*_U_—c}
U."C* U+_C* U+_C

U+—c{ . UL}
—cW,~¢c U.-0o’ ©)

+ |4

where the subscripts (—) and (+) indicate evaluation
of the function on the southern and northern sides
of the profile breaks, respectively. If, as in many cases
of interest here, we have U, = U_ with a discontinuity
in dU/dy across the break, this expression becomes
l l’ .
—[4*4),, = (U +)s (10)
where U is the velocity at the break. This can be
rewritten in delta-function form:

+H | 4[?
e, = [ 2 ’ 2L e - Ui~ yody. (1)

The potential vorticity gradient is generalized to

8Q a0
dy ady

where dQ/dy is the well-behaved part of the potential
vorticity gradient in the regions between profile
breaks and (U_ "8y — »o) is a delta function
contribution to the potential vorticity gradient due
to the profile breaks. The integrated potential vortic-
ity equation (8) is

+ (UL = Uy — yo), (12)

Yo~ H
—f ay{l41? + k4}dy — f ady{l4)? + k34*}
~-H Yo+
+H |42
[ ap 00
w U—cdy
The imaginary part of this equation gives the first
necessary condition for instability:
B
u [U—=¢f ay
If ¢; is different from zero, there must be a change of
sign in the effective potential vorticity gradient (12).

The second necessary condition is obtained from the
real part of (13). It is

4P a0
f IU—cP(U )a—ydy

f Vo
-H

dy=0. (13)

(14)

H H
[4'Pdy + f |A'dy + f k2|A1%dy > 0. (15)
-H

Yo+
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Thus, if (U — ¢)oQ/dy + (U~ — U%L)d(y — o) is ev-
erywhere negative, the flow must be stable.

When the flow U(y) is itself discontinuous, the first
derivative dU/dy at profile breaks can be represented
by a delta function. The potential vorticity gradient
at the profile breaks is dominated by (—U,,), which
looks like a delta-function derivative. I have not
found a simple statement of the necessary conditions
for this case.

Because the potential vorticity gradient is single-
signed or zero everywhere in the fluid except at iso-
lated points where it has a delta-function character,
the necessary conditions for instability are satisfied
only if the delta function is of the opposite sign to
8. This feature is similar to that in Eady’s (1949)
baroclinic instability problem in which satisfaction
of the necessary conditions for instability depends on
delta-function contributions to the potential vorticity
gradient at the upper and lower boundaries.

A third theorem, which places bounds on the phase
speed and growth rate of the perturbations, is the
semi-circle theorem, derived in its non-g-plane form
by Howard (1961) and extended to the g-plane by
Pedlosky (1964). A fourth theorem, applicable only
when g is zero, is Howard’s inflection-point theorem
(1964). For each inflection point (U,, = 0) there is
one neutral mode with contiguous unstable solutions.
This theorem has not been extended to the S-plane:
it is clear from the work of Howard and Drazin (1964)
and Dickinson and Clare (1973) that additional
modes appear as soon as 3 is non-zero. The added
modes appear, from the present work, to arise when
the latitudinal structure of the eigenfunctions can be
wavelike.

4. Radiation conditions

One purpose of this work is to explore the occur-
rence of “radiating” modes of instability. In a heu-
ristic sense, this means seeking solutions that have
their primary energy source in some well-defined re-
gion and that can propagate this energy to large dis-

. tances (compared with the internal deformation ra-

dius, say) from the source. The word “radiating” usu-
ally describes a pure wave, say of the form e%e’**,
where k is real and / is imaginary. When /[ is purely
real, the solution is “trapped”. When the phase speed
¢ is complex, so that the wave is growing, the y-wave-
number is also complex. The solution is then wave-
like with an evanescent envelope in y, because the
source of energy for the wave is localized in space
(at the region of horizontal shear for these barotropic
instabilities). Since the disturbance is growing in time,
at any time after the onset of instability, there will
be a spatially decaying disturbance outside the jet,
because it takes a finite time for the (initially small)
disturbance to reach a point far from the jet. There-
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fore, any growing wave will not look like a purely
“radiating” disturbance away from the source of en-
ergy. Neutral solutions, on the other hand, will enjoy
the distinction of being either purely wave-like (Rossby
waves) or purely evanescent in the y-direction. The
growing waves can be identified as radiating or
trapped by the structure of the contiguous neutral
mode, which will be either purely wave-like or purely
evanescent. We identify unstable waves that neighbor
neutral Rossby waves as “radiating”. These unstable,
radiating waves look nearly like Rossby waves except
that they have slowly decaying envelopes imposed on
the wave-like structure in y.

The definition of radiation can be quantified. If the
disturbance is of the form

e i(kx+1y—kert) o™ Ly+keit

north of the energy source, the envelope of the dis-
turbance moves out at the rate kc¢;//,. As an example,
look at a single unstable wave that satisfies the baro-
tropic Rossby-wave dispersion relation in the far-
field, but has complex phase speed and y-wavenum-
ber. Its dispersion relation is

G tici=U-— 2 + 1P l|k2+12|2' (16)
Thus, ke, 2Bkl
2Bkl

T Tl R tn

The ratio kc;/l, is the meridional group velocity: it
approaches a non-zero constant as ¢; — 0 if the dis-
turbance in the far-field is really a Rossby wave. If,
however, this ratio approaches zero as ¢; — 0, the
disturbance is trapped since the decay scale (/)" re-
mains non-zero. (Some “‘radiating” solutions are ac-
tually found that have /; — 0 as ¢; — 0, but contiguous,
slightly unstable waves clearly have large decay scales
and wave-like behavior in y.)

One is tempted to define a radxatmg instability as
one that looks wavy in y. In fact, this is an acceptable
criterion. Again, considering a barotropic Rossby
wave, the y-wavenumber can be written as

1=—PB
1i+llr—U—Cr—iCi k=

If, as ¢; — 0, (U — ¢,) is positive and k? is small, the
radicand is positive and /, tends to zero. The resulting
disturbance is a Rossby wave with y-wavenumber /;.
If, as ¢; — 0, either (U — ¢,) is negative or (U — ¢,)
is positive and k? is large, the radicand is negative so
that /; tends to zero and the disturbance is trapped.
Thus, ifas ¢; — 0,
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7 — 0, trapped disturbance
, (18)
l—' - o0, radiating disturbance

Visually, this is a measure of how “wiggly” the ei-
genfunction appears as ¢; — 0. If, as ¢; — 0, there are
more and more oscillations before the disturbance
decays away in y, the mode is radiating. Also, when
I, = [;, we have
B —¢)
-

If the wave is not growing, and if ¢; = 0, waves with

BU—c¢)
|U - crlz

- k*=0.

k? <

are purely wave-like in y, while waves with

BU—c)

> u TR

are evanescent in y. The transition from waviness to
evanescence as a function of k persists when ¢; is non-
zero. The criterion, /, = ;, will be used to distinguish
between unstable modes that are more wave-like (and
less trapped) and those that are more evanescent.

Under what circumstances will a mode be radiating
away from the energy source? The first obvious re-
quirement for radiating disturbances is that the flow
in the irradiated region be capable of supporting
waves. This means that there must be a potential
vorticity gradient there. In addition, the phase speed
condition (McIntyre and Weissman, 1978) must be
satisfied: if a forced disturbance is to radiate, the phase
speed and x-wavenumber of the forcing (in this case,
the unstable wave) must match the phase speed and
x-wavenumber of a “free”” wave (essentially a Rossby
wave in this case). From the semi-circle theorem, we
can put limits on the allowed phase speed of an un-
stable wave. From the Rossby-wave dispersion rela-
tion in the outer-field, the range of Rossby-wave
phase speeds in the outer-field is known. For the
phase speed condition to be met, the instability phase
speed must be westward with respect to the flow speed
in the radiation region since Rossby waves have only
westward phase speeds. This means that either a shear
flow with U, # U__, or a westward jet might radiate,
while the possibilities for radiation from an eastward
jet are much more restricted.

5. Shear layer instability

In this and the next sectioh, specific results will be
obtained for several velocity profiles. “Shear” layers,
defined as flows with different velocities at +oco0 and
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—oo or at the northern and southern walls (Howard
and Drazin, 1964), are discussed in this section. “Jet”
profiles, where the flow is the same at the outer
boundaries, are discussed in section 6.

a. Shear layer with a discontinuity in U(y)

The simplest shear flow is the vortex sheet, which
has a single discontinuity in U(y) at, say, y = 0. The
non-rotating (or equally, f-plane) case was discussed
by Rayleigh (1879). The case with non-zero # was
discussed by Howard and Drazin (1964). The nec-
essary conditions for instability of the vortex sheet
are satisfied since the potential vorticity gradient
changes sign because of its double delta function
(arising from U,,) at y = 0. The solution, subject to
the boundedness condition at y = +o0, is

e, y>0
4= eluy y< 0 (19)
where
B )1/2 ( ﬂ )1/2
= 2+ = 2 .
A (k —1) h k +c+1 (20)

When ¢ is complex, /; and /; are chosen to have pos-
itive real parts to satisfy the boundedness condition
on the eigenfunctions at infinity. When c is real, the
I’s are purely real or purely imaginary. If real, they
must be positive. If imaginary, the branch of / is cho-
sen that has outward group velocity, dc/dl.

The dispersion relation for non-zero 8 was found
by Howard and Drazin (1964), using the matching
conditions (4) and (5):

B

4k?

There are three roots, one of them real (neutral) and
the other two complex conjugates, as found by Ho-
ward and Drazin (1964). The complex roots are the
unstable (growing and decaying) modes which exist
for all B and k because 1) no 8 is large enough to

e+ 1)+ 3B+ 1=0. 2n
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cause the potential vorticity gradient to be of a single
sign and 2) even the shortest waves sense the change
in sign of 8 ~ U,,, since U{y has both signs right at
the profile break. As Bk — 0, ¢ — =iU,. As
Bk~ — o0, ¢ — *iUy37"2 The dispersion relation
is plotted in Fig. 1, showing both ¢; as a function of
¢, and ¢; and ¢, as functions of k. The phase speed
depends only on the ratio 8k™2, so the roots for all
B’s follow the same.curve in the ¢, — ¢; plane. The
retarding effect of 8 on the phase speed ¢, is clearly
seen at intermediate wavelengths.

What is the structure of the eigenfunctions? From
(20), with b = k2,

i} b > )
3= T (1t — i),
e l+lc— l|2( 1 +¢ —ic)
B b .
=i 1 +|c+ 1|2(l + ¢ — icy).

As B becomes large and b — oo, so that ¢ —
iiU03_l/2,

_l_i — 2b e—i51/6 _ljl_ S 2b e—iar/6
k? lc — 1/? > k? e+ 12

and k™! is proportional to e=*/'2 = (.26-.97i) while
Igk! is proportional to e /'2 = (.97-.26). In the
northern half of the profile where the flow is more
eastward, the eigenfunction is more oscillatory and
decays more slowly than in the southern half. (To the
north, the instability phase speeds are always less than
the flow speed, so the long waves satisfy the phase-
speed condition and look like Rossby waves with
complex phase speed and complex y-wavenumber.)
However, because the growth rates of disturbances
are non-zero for all choices of 8 and k, there is always
a pronounced, meridionally-decaying envelope.

—1/2

3—1/2

b. Shear profile with discontinuities in dU/dy.

The vortex sheet results of the previous section
explain some of the behavior of the unstable modes
of a shear profile, but since any realistic shear zone

12
b,
1.2r 08 5/ 1 5
k00
a 2%
77 T ¢ Ci
o8l o7 S 04
I, \\
G ’ k-0 .
’ \‘ 0
0.4/ \ (o]
] Y C, 5
0 1 1 1 TR | -04 L " ) L J
26 -06 -0z 0.2 06 10 o 1 2 3 4 5
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FIG. 1. Vortex sheet dispersion relation: (a) ¢;(¢c,) and (b) ¢,(k) and c;(k). At 8 = 0,
¢, and ¢; must fall inside the dashed curve according to the semi-circle theorem.
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has non-zero width, the results strictly apply only to
the behavior of long waves which see a shear zone as
a discontinuity in U(y). In a realistic flow where the
shear zone has non-zero width, the short waves
should be stabilized with maximum growth rate at
an intermediate wavelength. A smoothly varying flow
will also be stable if 8 is large enough to make the
potential vorticity gradient single-signed everywhere.
The flow is approximated using the method of Sec-
tion 2 in which the potential vorticity gradient is zero
or uniform in discrete regions of the flow. The ve-
locities are '

U] = —1

__g_ é 2 '
v_Un 3 y+2y (22)
Un=1

The potential vorticity gradient is 8 in Regions I and
III, so waves can be supported there when 3 is non-
zero. The velocity profile and a schematic of its po-
tential vorticity gradient are shown in Fig. 2 for two
values of 3. Change in sign of the potential vorticity
gradient occurs only because of delta function con-
tributions to —U,, at y = %1, since it is positive or
zero everywhere in Regions I, II and III. As 8 in-
creases, the velocity profile changes in Region II until
(8 — U,,) is positive everywhere. At this 8 (=8,), the

flow must be stable, and hence this patched profile

mimics the g-stabilization that occurs in smoothly-

@ 0
L4
I
-2
24
T Yy ay
T
(c) (d)
Y, Y
I
F2
It uty) 5
I

FiG. 2. Shear layer: U(y) and 30/8y for two choices of 8. (a) and
_(b): 8 = 0.5 (supercritical); (c) and (d): 8 = 1.5 (subcritical).
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varying flows. This can be seen in Fig. 2 where U(y)
and 80/dy are shown for supercritical and subcritical
8. The maximum @ for which instability is possible
is 8 = 1, from (22).

The solution to the potential vorticity equation,
subject to boundedness conditions at infinity, is

A=l
An = a,e” + e L | (23)
Ay = de'™ |
B

where [f = k* + and /% = k% — % , just as

1 +c¢ 1
in the previous example. The dispersion relation ob-
tained from the matching conditions is

celli=(1+ ) s o+ La )
« {[ (1 +——1)”2'](1 —gH B)}
() o rarta - o)
I e

(24)

where b = k™2,
The variable parameters are 3 and k. Various limits
of the dispersion relation can be examined before

-solving it numerically:

1) k — 0, B fixed: the dispersion relation is

28'2(B + ¢ + B(c* — D + [B(c — D]'*}
+(1++ (- 1)?=0

As 8 — 0, ¢ — +i37'2, which is the long-wave limit
of the vortex sheet instability. As 8 — 0,.c — —(8k™2)
[with k = O(1/8)].

2) k — oo, B fixed: ¢ = 1.

3) 8 — 0, k fixed:

1 172
= 1[1 — 2+ @71 - e"“‘)] :

As k — 0, ¢ = *i, the short-wave limit for the vortex
sheet. As k — o0, ¢ = %1.

4) B — oo, k fixed: ¢ = B(1 — 2k). Additional in-
formative limits are obtained by letting the length
scale L approach zero and infinity, with 8 = 8,L?U,™!
and k = k*L.

5) L—0: (l[k_l)(l + C)2 + (!]“k_l)(l - c)2 = 0,
the vortex sheet dispersion relation.

6) L — oo: ¢c— —f/2k.
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One other limit that reveals the retarding effect of 8
is
7 k— o0, 8=0k) c==x1— B/2k.

The long-wave limits are identical to the vortex
sheet results: when 8 approaches zero faster than k,
the limit ¢ = i is obtained, while when 8 approaches
zero more slowly than k, the limit is ¢ = +i37'/2, The
short-wave limit in all cases is a stable solution, with
¢ = zx1. For the limit where L increases to oo, the
flow appears to be an infinitely wide Couette flow to
the short waves, which are thus stable.

These limits delineate the results to be expected
from the dispersion relation. The dispersion relation
(24) was solved numerically using the secant method
with complex arithmetic to find the roots c(k) for
given 8 and k. Fig. 3 is the neutral stability diagram
in the 8 — k plane for this profile. The dashed curve
is the locus Re(/y) = Im(/y). The short waves are
more trapped and less wave-like in region III than
the long waves. The stability cutoffs were found up
to 8 = 0.95: extrapolating the growth rates to the 8
where ¢; = 0, the long waves are all unstable up to
B8 = 1.0 and the short waves are probably also unstable
up to 1.0, with a cusp in the stability diagram there
(so that there is a single short-wave neutral mode at
B = 1). At high 8, there are two separate ranges of
unstable wavenumbers. These are two separate modes
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FIG. 3. Shear layer stability diagram. ¢; = 0 along the solid curves.
The dotted curve is where Re(/;) = Im(/;;) and corresponds to the
transition from radiating long waves to trapped short waves. The
dot-dashed curves are extrapolated stability boundaries, ¢; = 0. S
means “stable”, UT means “unstable, trapped” and UR means
“unstable, radiating”.

L. D. TALLEY

er "0 (q)
08
06 o
5
04
3
) Kq
0 [ 1 koo I J
-1.0 -0.5 0 05 1.0

20 - (c) 20 - (d)
__i//\_
1t0Fr 3~ Re (Ly) 10
o
/ 1y Re(lg)
Q
[} Q [+ 7
Ny vﬁ_, Im (L) < T Im(£x)
5 -
-10 ? -1.0
20002 oa 06 08 1o 20 oz oa P 06 08 1.0
k

FIG. 4. Shear layer dispersion relation for 8 = 0, .1, .3, .5, .7.
(@) ci(c), (b) c.(k) and c;(k), (c) £,(k), and (d) €y(k). The northern
and southern meridional decay scales are [Re(£))] ™" and [Re(€yy)]™!
respectively.

which coalesce as 8 decreases, and are similar to the
two separate modes found by Dickinson and Clare
(1973) for the hyperbolic tangent shear layer. The
flow is stable for all 8’s greater than 1, the cut-off
required by the necessary condition for instability:
the necessary condition is sufficient for this profile.

Figs. 4a, b show ¢; as a function of ¢, and ¢ as a
function of k for several choices of 8. At 8 = 0, the
well known result for a Rayleigh broken-line profile
with a non-zero width shear zone is obtained. There
is a dramatic change in the long-wave behavior when
even a small amount of 3 is introduced. The growth
rate drops dramatically and the phase speed is re-
tarded (made more westward). There is a cusp in the
real phase speed and a sudden change in the imagi-
nary phase speed at intermediate k: both are nearly
constant at low k. As 8 increases, a tiny intermediate
range of wavenumbers is stabilized, separating the
long- and short-wave behavior. As 8 nears the cutoff
of 1, the growth rate approaches 0 and the phase speed
of all unstable waves approaches —1, the minimum
flow speed.

The structures of the long- and short-wave modes
are quite different. Figs. 4c, d show the real and imag-
inary parts of /; and [ for several 8’s. The decay
scales are given by [Re(/)]™! and [Re(/in)]™! and the
y-wavenumbers by Im(/;) and Im(/i;). When Re(/) is
small and Im(/) is large, the disturbances radiate. On
the northern side of the profile where / = J;, the dis-
turbances are always trapped. On the southern side
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where | = Iy, the long waves radiate with a clear
transition to trapped behavior as k increases.
Eigenfunctions at 8 = 0.5 are shown in Fig. 5,
showing the difference in trapping scales of the ra-
diating and trapped modes. Both the short- and long-
wave modes are evanescent on the northern side of
the shear layer where the flow is easterly and the phase
speed condition cannot be satisfied. On the southern
side of the shear layer, the short-wave mode is trapped
and the long-wave mode is radiating even though the
phase speeds of both modes are westward with respect
to the flow speed. The difference in behavior is due
to satisfaction (or lack thereof) of the phase speed
condition. The Rossby-wave dispersion relation with
a mean flow of U = 1, for 8 = 0.5, is plotted in Fig.
6 for two extreme y-wavenumbers. Also shown in Fig.
6 are the phase speeds of the instabilities at 8 = .5:
the change in behavior from radiating to trapped oc-
curs where the instability dispersion relation inter-
sects the Rossby-wave dispersion relation near / = 0.
The phase speed condition is satisfied on the long-
wave side of this intersection, while the shorter waves
cannot match any Rossby waves in the far-field.
Thus, for this simple shear profile there are ra-
diating modes when the range of instability phase

(a)
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Fi1G. 5. Shear layer eigenfunction amplitude, A(y), at 8 = 0.5 for °

(a) k = 0.5 (radiating mode) and (b) k = 0.6 (trapped mode).
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FiIG. 6. Phase speed of barotropic Rossby waves (RW) and shear
layer instabilities (UW) at 8 = 0.5. The barotropic Rossby wave
phase speed in a mean flow U = 1 is shown for y-wavenumbers
0 and 1000.

speeds allowed by the semi-circle theorem overlaps
the range of Rossby-wave phase speeds in the far-
field. These can be thought of as destabilized Rossby
waves rather than as inherent instabilities of the shear
layer. Although there are many Rossby waves at each
x-wavenumber, 0 < k < oo, that potentially could be
destabilized, the short waves are stable and only one
Rossby wave at each long wavelength is destabilized.
The short-wave cutoff is presumably due to lack of
penetration into the shear layer as k increases (23).

Comparison of the results from this profile with
the results of Howard and Drazin (1964) and Dick-
inson and Clare (1973) for the shear profile, U(y)
= tanhy, indicates how well the broken profile rep-
resents a smoothly varying flow. Howard and Drazin
(1964) found the trapped, unstable mode of the shear
flow and predicted an additional unstable, long-wave,
low-8 mode.- Dickinson and Clare (1973) found the
unstable modes of the hyperbolic-tangent profile nu-
merically. At low 8 and k, there are two distinct
modes of instability, overlapping in wavenumber.
The first mode is strongly trapped to the region of
maximum horizontal shear, corresponding to Ho-
ward and Drazin’s (1964) main mode, while the sec-
ond mode is “radiating” with much slower meridi-
onal decay, corresponding to Howard and Drazin’s
additional mode. Because the stability diagram is
complicated by the radiating mode at low 8 and k,
Dickinson and Clare did not draw the completed sta-
bility diagram for low wavenumbers. At higher 3, the
two modes do not overlap in wavenumber but the
growth rate of the radiating mode is very small. Large
(8 stabilizes the flow altogether.
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The unstable modes of the pieced shear layer are
very similar to the unstable modes of the hyperbolic-
tangent flow in that there are trapped and radiating
instabilities with roughly similar neutral curves. The
main differences are that 1) at low 3, where the hy-
perbolic-tangent flow has two separate modes over-
lapping in wavenumber, the present model has a sin-
gle mode which is a combination of the two hyper-
bolic-tangent modes, without the lower growth rate
parts of the overlapping modes, and 2) where the
oscillatory mode for the hyperbolic-tangent profile is
limited to a small range of 8 and k, the oscillatory
mode for the shear layer occurs for all values of 8 up
to the cutoff dictated by the necessary condition for
instability. The first difference suggests that mode
coalescence occurs more readily for “broken line”
profiles than for continuous profiles. The second dif-
ference may not be a difference at all: the “neutral”
modes of the hyperbolic-tangent profile were deter-
mined numerically annd were defined to have a cer-
tain, small ¢;. The true neutral curve for the radiating
mode may really be similar to the neutral curve found
here, extending to the maximum g allowed by the
necessary condition for instability.

The close correspondence of the present results to
those of Dickinson and Clare (1973) is important to
note since it was not clear at the outset that this would
be true. Similar results were obtained because both
profiles were 1) monotonically sheared, 2) on the 8-
plane with the potential-vorticity gradient in the far-
field essentially equal to 8, and 3) stabilized by large
B. The variation of U(y) with 8 in the present case
may seem to present intuitive difficulties, but in fact
it is necessary if the flow is to be stabilized by in-
creasing 3.

6. Barotropic jets

A jet is defined as a flow that has the same velocity
at +oo and —oo (Howard and Drazin, 1964). Only
symmetric jets with no more than two inflection
points in U are considered here. Howard’s (1964) in-
flection-point theorem predicts two neutral modes
with contiguous unstable modes at § = 0 when there
are two inflection points (where U,, = 0). The theo-
rem does not predict the number of modes when 3
is non-zero and, in fact, we saw in the previous section
that a new mode, associated with Rossby waves out-
side the shear layer, was introduced when 8 was non-
zero. A search for unstable modes of a jet can, how-
ever, be begun at 8 = 0 where there will be two un-
stable modes. If the jet is symmetric, the two modes
will be sinuous (symmetric) and varicose (antisym-
metric).

The jets considered here are: (1) top-hat, eastward
jet, (2) eastward jet with shear layers, and (3) west-
ward jet with shear layers. (“Westward” jets were ex-
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plored by allowing non-dimensional 8 to be negative.)
Eastward and westward jets are considered separately
because their potentials for radiation of energy in the
far-field differ radically. (The energy from the hori-
zontal shear of an eastward jet essentially “radiates™
to the inside of the jet.)

The velocity profiles are chosen by the method
explained in Section 2. Fig. 7 shows the eastward jets
and a schematic of their potential vorticity gradients.
The potential vorticity gradient for the top-hat jet
includes a double delta function (due to U,,) at the
profile breaks. Because the top-hat shape is indepen-
dent of B, there is no range of 3 for which this flow
is absolutely stable by the necessary condition (14)
since the potential vorticity gradient changes sign for
any choice of 8. The shear-layer jet differs in this
respect. Its shape in the shear zones depends on 8 in
the same way as the shear profile of the previous sec-
tion. When 8 is large enough, the delta function for
U,, at the profile breaks becomes positive and the
potential vorticity gradient is positive everywhere (for
eastward flow). The flow then must be stable for all
8 larger than a critical value, 8., which depends on
the width (D — 1) of the shear layer.

a. Eastward top-hat jet

The unstable modes of the top-hat jet are well-
known, although aspects of their behavior as g in-
creases are explored here for the first time. Rayleigh
(1879) first posed the problem of the top-hat jet, for
the case 8 = 0. Howard and Drazin (1964) extended
it to the 8-plane, giving analytical results for the phase
speed and growth rate for various limits of wavenum-
ber and S. Flierl (1975) discussed the full behavior
for varying values of 8k~2, although he did not com-
pletely explore the 8 and k parameter ranges.

When B is non-zero, the dispersion relations for
the sinuous and varicose modes, obtained from the
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FiG. 7. Barotropic jets: (a) U(y) and (b) 30/ay for the top-hat
jet. (c) U(y) and (d) dQ/3y for the barotropic jet.
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solution to (2) in Regions I and II and the matching
conditions (4) and (5) are (Howard and Drazin,
1964):

2L+ (1 — ¢))* tanhl; = 0
Cih u( 1) | . 25)
C%I[ tanhl]] + l"(l - C2)2 =0
where
ﬁ=k2+€
(26)
=kt L
1—-¢

Here ¢, corresponds to the Symmetﬁc mode and ¢,

to the antisymmetric mode. The eigenfunction is
A[ = e‘i'y

) (27)

Ay = d(eiuy + e—/uy)

where the (+) sign is for the sinuous mode and the

(—) sign for the varicose mode and
c—1 et

c ez’

d=

The limits of the dispersion relation as 8k~2 and
k take extreme values are given by Howard and Dra-
zin (1964). Both the varicose and sinuous modes are
unstable at very large k [where ¢ — Y2(1 £ i)] and
very large 8 [where ¢ — Y»(1 * i/3'?)].

The sinuous modes of the eastward top-hat jet are

unstable for ranges of 8 and k shown in the stability -

diagram of Fig. 8. Notice that the long waves are
stable at low 3, but that increasing § actually desta-
bilizes the modes again. These waves will be called
“pB-destabilized” modes. All waves with high 8 and
high k are unstable. A dispersion relation illustrating
the f-destabilized mode and the main mode is shown
in Fig. 9. In Fig. 9 the corresponding real and imag-
inary parts of /; and /; are also plotted. Both modes
are trapped to the jet. They behave differently inside
the jet, however: from /;, we see that the 8-destabi-
lized mode is wave-like and the main mode is eva-
nescent inside the jet. The 8-destabilized mode has
a cross-jet wavenumber near the neutral curve of
roughly /2 at small k. .

The stability diagram for the varicose mode of the
top-hat jet (Fig. 10) is similar to the diagrams for the
sinuous mode (Fig. 8). Again there is a small region
where the varicose mode is stable, but it is now cen-
tered at higher 8. All waves are trapped to the jet.
The details of the stability diagram again depend on
the structure of the eigenfunctions within the jet: the
B-destabilized modes are more wave-like inside the
jet than the short-wave, low-8 modes. Dispersion re-
lations as functions of k for several 8’s are shown in
Fig. 11. There is a large shift in phase speed across
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FIG. 8. Top-hat jet (sinous mode) stability diagram in the 8-k
plane. S means stable and U means unstable.

the stable region of the stability diagram for 8 = 3.
Also shown in Fig. 11 are /; and /;. Outside the jet,
the disturbances are trapped since Re();) is rather
large. Inside the jet, the eigenfunctions with small &
and high 8 are wave-like. The y-wavelength inside the
jet for these eigenfunctions is roughly =, correspond-
ing with the lowest cross-channel, antisymmetric
mode. ’

Thus, both the sinuous and varicose modes are
stable in a small region of the 8 — k plane, with a
locus of minimum ¢; extending to infinite 8 from the
stable region. The stable region and curve of mini-
mum ¢; mark a transition from evanescent to ra-
diating behavior inside the jet. That is, since

B8

2 12 _
/ k T

inside the jet, /? is positive or negative depending on
how large k and @ are if ¢ is real. When k is large or
8 small, the disturbance is evanescent inside the jet.
As 8 increases relative to k, / becomes imaginary and
the disturbance is wave-like inside the jet. When c is
complex, this distinction is blurred. However, the
waves with high k and low 8 in Figs. 8 and 10 are
more evanescent inside the jet than the low-k, high-
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F1G. 9. Top-hat jets: sinous mode at 8 = 0.55. (a) ¢i(c,),
(b) ¢.(k) and ¢;(k), (c) £i(k), and (d) £u(k).

B waves. I do not have an explanation for the stability
of the profile in the narrow wedge in the 8-k plane.

b. Barotropic jet

The logical extension of the top-hat jet is a jet with
horizontal shear occurring over a zone of non-zero
width, as shown in Fig. 7. This profile is similar to
the shear layer profile, so it can be predicted that any
Rossby wave-like behavior will be confined to the
more westerly part of the flow, which is the central
jet in this case. Thus, the eastward jet will probably
not radiate energy outside the jet. In contrast to the
top-hat jet, the barotropic jet is stabilized when g is
large enough to make the potential vorticity gradient
single-signed, just as for the shear layer. The barotro-
pic jet is also stable to short-wavelength perturba-
tions, like the shear layer, since the short waves are
less able to sample the full width of the shear zone
(which they must do if they are to *“‘see” the change
in sign of the potential vorticity gradient.)

The profile has uniform velocity in Regions I and
IT and

_q_(t=»\_.8 N — v
U=1 (I_D)+2ux1 y) =y + 3

in Region III. The potential vorticity is 3 in Regions
I and II and zero in Region II. The length scale L*
is the half-width of the central jet, Region II. The
width of the shear zone, Region III, is (D* — L*) and
its non-dimensional width is (D — 1). The flow is
stable when @ is large enough to make dU/dy at y
= + D negative. This occurs when

B=p,=—2

m . (28)

TALLEY

983

The dispersion relation derived from the matching
conditions for the symmetric mode is

A9 1 e29)
o= =)
ol )4 29)
o o] 29)
SR

T TR

where S = (D — 1) and a = k2. When S — 0, the
top-hat dispersion relation (24) is obtained. The flow
is stable at high wavenumber since ¢ — 0, 1 as
k — oo with 8 fixed and ¢ — —8S/2k, 1 — B8S5/2k as
k — oo with 8 = 0(k). In addition, the flow must be
stable at high 8 because of the necessary condition
for instability.

The stability diagram in the 8-k plane for the sin-
uous mode is shown in Fig. 12 for two shear-zone
widths. The B./s for several shear-zone widths are
listed as follows:

X tanhk(l -

F1G. 10. Top-hat jet (varicose mode) stability diagram.
The dashed curve is the locus of minimum ¢;.
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There are three effects of increasing the shear-zone
width: 1) the short-wave cutoff occurs at lower values
of k; 2) as the shear zone widens, (3, decreases from
oo for a top-hat jet to 2 for a jet with shear-zone
widths equal to the central jet half-width, 3) the §-
destabilized modes occur at.higher 8 as D increases.
The last two tendencies are opposing: as the shear
zone widens, the B-destabilized modes disappear
since B. is decreasing while the modes occur at higher
and higher 8. When the shear zone narrows, there are
many (-destabilized modes as g is increased to 8. at
k = 0. As the shear zone is widened, fewer unstable
modes appear until there is only one unstable mode
when D is between 1.55 and 1.6. This single mode
persists for all D’s larger than 1.6.

The unstable regions on the stability diagram
(2.6.6) all terminate in a cusp at 8. This cusp may
be an artifact of the specific choice of profile with
breaks in U or dU/dy [such cusps do not appear in
the stability diagram for the continuous tanhy shear
flow (Howard and Drazin, 1964)].
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FIG. 12. Barotropic jet, sinous mode: stability diagram in the
B-k plane for shear zone widths (D — 1) = 0.5 and 0.7. “S”
= stable, “UT” = unstable, trapped, “UR” = unstable, radiating.
The solid curves are neutral curves and the dot-dashed curves are
extrapolated neutral curves. The dashed curves are the loci Re(¢))
= Im(f,)
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Dispersion relations, /; and /; are shown in Fig. 13
for two values of 8 at D = 1.5. Note that increasing
B tends to decrease the eastward phase speed and
growth rates of the instabilities.

None of the unstable modes of the barotropic east-
ward jet radiate since their phase speeds are always
more eastward than the flow speed outside the jet.
This could not be predicted by the semi-circle theo-
rem, since the semi-circle theorem is modified when
8 is non-zero to include the possibility of unstable
waves with phase speeds less than the minimum
phase speed. However, Tung (1981) showed that the
neutral mode contiguous to unstable modes with
phase speeds outside the range of U(y) must have its
phase speed within the range of U(y). Thus, an east-
ward, barotropic jet can have no radiating modes.

The instabilities of westward barotropic jets radiate
since their phase speeds are in the range of Rossby-
wave phase speeds in the far-field. However, the baro-
tropic jet resembles the barotropic shear layer, folded
over onto itself, which had radiating solutions in the
more westerly part of the flow. To look at westward
jets, we simply allow 8 = 8,L?>U™! to be negative. The
stability diagram (Fig. 12) for negative 8 is very sim-

o4 (a)

-
e

03r /

S~ 02+t
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ilar to the shear layer stability diagram (Fig. 3). The
dotted curve effectively separates radiating solutions,
on the long-wave side, from trapped solutions, on the
short-wave side. At large §, there is actually a range
of stable waves between the radiating and trapped
instabilities. The stability boundary at large 8 is at
8 = 8. for both radiating and trapped solutions. While
the unstable region for the trapped solutions termi-
nates in a cusp at 8 = 8., the radiating solutions are
unstable for a wide range of low wavenumbers up to
B8 = B.. The short-wave cutoff at a given 8 for the
radiating (long wave) mode apparently could be pre-
dicted if the neutral mode’s phase speed were known
since the meridional wavenumber Re(/;) always ap-
pears to be zero for the neutral mode.

The dispersion relation and eigenfunctions for the
westward jets are also very similar to those of the
barotropic shear layer. In Fig. 14, the dispersion re-
lation and y-dependences [/i(k), (k)] are shown. The
similarity to the shear-layer dispersion relation (Fig.
S) is obvious: the growth rate and phase speed of the
long waves are depressed compared with those of the
shorter waves. The long waves radiate outside the jet,
as evidenced by the small size of Re(/;) and large size

F1G. 13. Barotropic jet, sinuous mode: dispersion relations for D = 1.5.
(@) ci(cy), (b) c,(k) and ci(k), (c) £i(k) and (d) €u(k) for 8 = 0, 2.5.



986

10r (b)
08 | Re
9,3 r (O) 08
Q
0.2 04 r
Q\
o1t o2l
Im
o 0 ) A
06 0.8 1.0 ] 1.0 20 3.0
cr k
4r (d) /Re
(C) —_’/\_
2 . Re ) oLl
§ &
~ LR —
S o= Im of Cim
[¢) 10 20 30 ¢] 1.0 20 3.0
K &
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of Im(/;). Eigenfunctions for a radiating and a trapped
mode are shown in Fig. 15 (for the north side of the
jet only): the difference in their behavior is striking.

7. Summary

A method for simplifying a barotropic flow profile
when the ambient potential-vorticity gradient is non-
zero was introduced. The results for a monotonic
shear layer agree well with Dickinson and Clare’s
(1973) linear-stability results for the hyperbolic-tan-
gent shear layer. Necessary conditions for instability
were restated to include the effects of discontinuities
in the first derivative of the basic velocity, dU/dy.
Results for eastward and westward jets were also ex-
plored, assuming that these results also resemble the
results for a continuous flow profile.

Because of the way the profiles with shear layers
are constructed, they simulate the behavior of con-
tinuous flows, which can be stabilized by 8. The nec-

~ essary conditions for instability are sufficient for these
profiles. Special attention was given to the existence
of radiating modes when the ambient potential-vor-
ticity gradient was non-zero (and equal to 8). A def-
inition of radiation in terms of the structure of the
neutral mode contiguous to the instabilities was
made.

It was found empirically that radiating instabilities
exist whenever the range of Rossby-wave phase speeds
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overlaps the flow-speed range, i.e. whenever the
phase-speed condition can be satisfied. In a sense, the
Rossby waves of the far-field are destabilized by the
localized horizontal shear. In other words, when 8
= 0 there is only one possible mode in the far-field
and it is meridionally evanescent. This mode is un-
stable as long as 8 < S.. It is just one of the many
possible modes which can exist when 8 # 0: all of the
others are wavelike in the meridional direction.
There is a symmetry between the results. for the
eastward and westward jets. In an.eastward jet,
Rossby waves inside the jet are subject to destabili-
zation while in a westward jet, Rossby waves external
to the jet can be destabilized. It is found that both
classes of Rossby waves are destabilized by horizontal
shear. However, the finite width of the jet appears to
quantize the Rossby waves in the center of the east-
ward jet. Each cross-jet “mode” is really a discrete
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FIG. 15. Barotropic jet, sinuous mode, at D = 1.5 and 8 = —2.0:
eigenfunctions for (a) kK = 0.1 and (b) k = 2.0.
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band of waves in 8 and k because of the indefinite
width of the “channel”. Neighboring cross-jet modes
do not necessarily overlap in 8 and k, resulting in
stable regions in the -k plane where no cross-jet
“modes” exist. Each cross-jet mode that exists for 8
< B, is unstable. In contrast, the far-field is semi-in-
finite in y, so there is a continuum of modes filling
B-k plane. When the jet is westward, this continuum
of far-field Rossby waves is unstable as long as 8
< B.. Thus, when 8 is non-zero, the existence of ad-
ditional modes that are not predicted by Howard’s
(1964) inflection point theorem is strongly related to
the existence of wave-like solutions in y.

The relevance of these instabilities to the ocean is
discussed in a second paper (Talley, 1983), in which
vertical shear in the form of two layers is added to
the problem discussed in the present paper. The main
result of the present analysis that is of importance in
the ocean and atmosphere is the proclivity of the in-
stabilities of westward jets to radiate energy long dis-
tances from the jet while the instabilities of eastward
jets are much more tightly confined. We might imag-
ine that the nonlinear development of the instabilities
and the basic flow depends on how much of the in-
stability energy remains near the jet. If the energy is
tightly confined to the jet, the possibilities of nonlin-
ear interactions may be much greater, and in the pres-
ence of a second instability mechanism, such as baro-
clinic instability, these interactions may lead to pro-
longation and intensification of the jet. Thus, eastward
jets may be more likely to be long-lived and intense
than westward jets. Until a nonlinear analysis is at-
tempted, however, this must remain a speculation.
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