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Benefits humans rely on from the ocean – marine ecosystem services – are increasingly vulnerable

under future climate. This paper reviews how three valued services have, and will continue to, shift

under climate change: (1) capture fisheries, (2) food from aquaculture, and (3) protection from coastal

hazards such as storms and sea-level rise. Climate adaptation planning is just beginning for fisheries,

aquaculture production, and risk mitigation for coastal erosion and inundation. A few examples are

highlighted, showing the promise of considering multiple ecosystem services in developing approaches

to adapt to sea-level rise, ocean acidification, and rising sea temperatures.

Ecosystem-based adaptation in fisheries and along coastlines and changes in aquaculture practices

can improve resilience of species and habitats to future environmental challenges. Opportunities to use

market incentives – such as compensation for services or nutrient trading schemes – are relatively

untested in marine systems. Relocation of communities in response to rising sea levels illustrates the

urgent need to manage human activities and investments in ecosystems to provide a sustainable flow

of benefits in the face of future climate change.

& 2013 Elsevier Ltd. All rights reserved.
1. Problem statement

Recent disasters such as the tsunami in Japan, the Gulf of
Mexico oil spill, and Hurricane Sandy reinforce understanding of
human dependence on the ocean, and how the delivery of ocean
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services could be affected by multiple environmental stressors,
including climate change, contaminants, and increasing coastal
development (e.g., [1–4]). Although society receives many natural
benefits from ocean ecosystems, from seafood production to
shoreline protection to recreational opportunities [5–8], many of
these benefits are not valued through markets and thus are not
explicitly accounted for in decisions. Consequences of further
degradation of marine ecosystems include more expensive and
less available seafood, declines in ocean-based livelihoods and
cascading social and economic impacts, increases in coastal
property damage and risk to human life, and reduced recreation.

Climate change affects the biophysical background upon
which other human impacts are measured, but because its
impacts are perceived to be distant, it is typically ignored in
developing day-to-day ocean management strategies. In reality,
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climate change impacts on the ocean are already evident and
likely to worsen with time [9,10]. Atmospheric CO2 concentration
has increased by 40% over the last century, and is projected to
continue growing into the future under all realistic emission
scenarios [11], further increasing pressures on marine systems
through ocean acidification and warming. Observed and projected
anomalies in global temperature and sea level are increasing at an
accelerating rate [11], which portend challenges for species’
environmental tolerances and ocean productivity, the ecological
interactions that determine ecosystem function, and the stability
of coastal human communities [9]. Greenhouse gas emissions
from the past have committed the planet to a certain amount of
future climate change, regardless of mitigation measures put into
place in the near to mid-term future [11].

In the face of these dramatic changes to ocean environments,
society is beginning to respond by altering individual behaviors,
innovating technologically, and adjusting policies and manage-
ment [10,12–15]. Evaluating the cumulative effects of potential
climate solutions for society as a whole remains a challenge,
especially because marine climate impacts cut across several
sectors of existing management and regulation, such as fisheries,
transportation, recreational activities, and coastal and energy
development. Expressing objectives for climate adaptation in
terms of multiple ecosystem services would allow us to: (1)
understand the breadth of climate change impacts more clearly
by focusing on changes to those ocean services society values
most (e.g., food security, shoreline protection, recreation), and (2)
consider and prioritize potential adaptation and mitigation solu-
tions to account for cumulative impacts on people through
changes in these highly valued ecosystem services.
2. Climate change and marine ecosystem services

Climate change will impose significant challenges to food
security for both capture fisheries and aquaculture. Seafood
currently provides �15% of the animal protein intake for the
world’s population, along with essential nutrients and livelihoods
[16–21]. Range shifts in fish and shellfish populations attributed
to climate [4,19,21–24] have altered the magnitude and distribu-
tion of capture fisheries taken across the globe [25,26]. Small-
scale commercial and recreational fisheries are especially vulner-
able, since it is difficult for small boats to venture far from harbors
and traditional fishing grounds [27–30], and less capital is
available to switch gear or develop new markets [28,31]. Thus,
even though the total value of fishery landings may have risen in
some areas, the distributional effects for fishers are likely to be
stark, as some fisheries fail and others emerge [3,25,27,32].

At the same time, sea-level rise and potential increases in
storm frequency and severity will threaten coastal communities.
Coastal habitats – such as seagrasses, kelp forests, coral reefs,
mangroves, wetlands, and dunes – can provide protection from
Fig. 1. An illustrative example of how two potential adaptation strategies (coastal armo

affect three types of ocean benefits (food security, coastal protection, tourism and recrea

(�), or mixed (7). Solid lines indicate stronger interactions than dotted lines. Although

aspects such as cost-effectiveness over time, it illustrates the value of evaluating trade
erosion and inundation due to storm surge (e.g., [33–43]). Loss of
these nearshore habitats can have dire implications, including
damage to coastal infrastructure, private property, and loss of
human life [39,44–49]. For example, coastal wetlands in the
United States are estimated currently to provide $23.2 billion/
year in storm protection services [50]. Marshes and mangroves
are especially vulnerable to sea-level rise, particularly in devel-
oped areas where ‘‘coastal squeeze’’ allows no room for inland
migration [51]. The shielding benefits of coastal habitats may
become more acute in the future as the coastal human population
expands [2,47,52]. Many of these same coastal habitats also
function as nurseries for recreationally and commercially impor-
tant marine and estuarine species [53].

Fishing opportunities and coastal protection directly impact
recreation and tourism, which are among the world’s most
profitable industries (e.g., [54,55]). Several studies of climate
change have quantified resulting economic loss in recreational
diving, fishing, tourism, and property values [1,28,56–62]. For
example, Brander et al. [1] noted that recreation and tourism in
coral reef systems often constitute the most important use values.
On Australia’s Great Barrier Reef, surveys suggested that reef trips
by divers and snorkelers could fall by up to 80% under reasonable
scenarios of climate-induced coral and fish decline, resulting in
lost tourism expenditures in the Cairns area of �A$103 million
per year [63]. Unfortunately, both corals [64] and temperate
seagrasses [65] are highly sensitive to warming; and the occur-
rence of coral bleaching from thermal stress may be exacerbated
by ocean acidification [9,66].
3. Opportunities and challenges of climate adaptation
strategies

Governments, NGOs, development banks, and private sector
innovators at the cutting edge of climate policy are actively
seeking adaptation strategies that address multiple, interacting
effects of climate change on marine systems [67–71]. Fig. 1
illustrates how evaluations of climate adaptation strategies could
change when considering the consequences for multiple ecosys-
tem service benefits. For example, a strategy such as coastal
armoring can look like a good idea when property protection is
the only goal; but look very different when trade-offs in impacts
on fisheries and recreation also are considered. One obvious
solution – drawing from the toolbox of existing management
measures to address pollution, over-fishing, coastal hazard risks,
or poor infrastructure – can increase resiliency of marine ecosys-
tems and services [14,15]. For example, existing coastal habitat
protection laws aimed at reducing eutrophication of receiving
waters also keeps in check those same biophysical processes that
exacerbate ocean acidification [13].

An ecosystem services framework for climate adaptation
informs questions like: should we focus on adaptation strategies
ring and habitat restoration) to a climate change process (in this case sea level rise)

tion). Type of impact indicated as either primarily positive (þ), primarily negative
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that maximize benefits for critical services (e.g., food provision),
or those that benefit the greatest number of services, or the most
vulnerable groups of people? Also, how can services provided by
ecosystems reduce risks to people from climate change? This
paper examines how the following proposed solutions to marine
climate change impacts could be evaluated through the lens of
ecosystem services.

3.1. Ecosystem-based adaptation

Ecosystem-based adaptation takes advantage of natural habi-
tats and processes to avoid or ameliorate climate impacts
[67,72–74]. Assessments show that where ecological resilience
is high (e.g., often where local stressors are minimized and habitat
heterogeneity and connectivity among marine habitats is main-
tained), coastal systems will be better equipped to respond to
climate-related changes in storms, freshwater runoff, fishing
pressures, and other potential stressors [2,75–79].

Restoration of oysters and seagrasses in the Chesapeake
[80,81], oyster reefs in the Gulf of Mexico [82,83], mangroves
around the Indian Ocean [84], and coral in the Great Barrier Reef
[85] have all been motivated in part by desires to protect
shorelines from erosion or inundation. If such shoreline restora-
tion strategies also considered climate impacts on future sea level
and storms, the benefits to surrounding communities could
multiply quickly [39,45,81,86]. Estimates of multiple ecosystem
service benefits from restored marine ecosystems are rare, but
decision support tools for their accounting, applications, and
potential tradeoffs with other uses are emerging [87,88]. Several
estimates for restored mangroves show that the benefit-to-cost
ratio of planting and maintenance is greater than 4, even
accounting solely for timber, fishery support, carbon sequestra-
tion, and coastal protection [89–91]. If additional services were
included (e.g., other foods, construction materials, household
items, medicines, tourism, and spiritual and cultural values) the
net benefits would be even greater.

The location of restoration projects has a strong effect on
tradeoffs in installation and maintenance costs, longevity, and the
full suite of ecosystem services that could be provided
[46,84,92–96]. The science is still evolving for how best to site,
design, and evaluate such restoration projects, and the scale of
implementation is just now increasing beyond that of small-scale
research sites (e.g., [83]). On an optimistic note, the rate of
recovery of many marine benthic and pelagic ecosystems is on
the order of 10 years or less; and there is recent hope for
restoration of even coral reefs—thought to be much slower to
recover than either mangroves or seagrasses [80,97–100].

3.2. Fisheries management

Simulation models suggest that adjustments to harvest
regimes (especially lowering catch of over-exploited species and
allowing higher catch of under-exploited, typically offshore spe-
cies) could have a greater effect on productivity and economic
performance in fisheries than impacts due to warming over the
next 25 years [3,101–103]. Observed lags in Northeastern United
States fisheries over the past 40 years relative to range shifts of
fished species suggest that economic or management constraints
are limiting adjustments of fishers to climate change [104].
Similarly, a global production-consumption model for fishmeal
fisheries found that harvest management and market behavior
(e.g., fishmeal demand from aquaculture and agriculture) affected
fishery yields more than climate impacts [105]. Thus fisheries
management should be a significant tool for bolstering fishery
resilience to climate change. In some regions, fishery scientists
are developing ecosystem models that incorporate climate
impacts on harvested species and their landings and market
values [4,25,102,105–107]; and this information could be used
to set catch levels that can be sustained under climate futures. For
data-limited fisheries and in places where technical capacity is
low, simpler methods are needed that incorporate basic ecological
principles into stock assessments and management decisions
(e.g., [108–110]).

Additional fisheries management strategies to bolster resili-
ence to climate change include integrating marine protected areas
(MPAs) into spatial management approaches to support liveli-
hoods through multiple ecosystem services, and identifying
multiple livelihood options for fishers and others whose liveli-
hoods depend on the ocean [29,87,111,112]. Assessment of these
strategies can help identify conditions under which fishing or
aquaculture-based communities should be encouraged to diver-
sify livelihood options, shift the location of their fishing grounds
or gear types, or get out of a fishery altogether. For example,
destructive fishing in coral reefs was found to have high initial
economic value, but the combined sustainable fishing, tourism
and coastal protection benefits of more protected reefs have
higher estimated value over time [67]. The ecosystem services
framework accounted for these multiple benefits of the reefs and
illuminated the significant net cost to those communities from
the single sector of fishing.

3.3. Aquaculture practices

Aquaculture is on the rise as demand for seafood increases and
wild harvests saturate globally and even decline in some regions
[18,23,113,114]. It is unclear how much additional food produc-
tion can be sustained from mariculture [18,23,24,113,114]. The
fraction of seafood consumption by humans from aquaculture
reached nearly 46% worldwide in 2008 and is projected to rise
[16,115]. In the United States, where 80% of seafood consumed is
imported, more than half of the imported seafood comes from
aquaculture [116]. Increased ocean acidification, low oxygen
events, and rising temperatures are already affecting shellfish
aquaculture operations [18,21,117]; and resulting vulnerability
tends to be concentrated in the tropics (e.g., [21]). The underlying
causes of vulnerabilities include biophysical factors (e.g., time
scales over which acidification is likely to reach critical thresh-
olds) and socio-economic factors (e.g., nutritional dependency,
economic importance of revenues from sales, and societal adap-
tive capacity).

The sustainability and reliability of aquaculture under future
climate depends heavily on the location of farms and the type of
operation. Climate considerations in risk assessments for aqua-
culture practices are growing [18,72,118–120]. For example,
implementation of the Aquaculture Stewardship Council (ASC)
standards for bivalves, abalone, and shrimp are underway; and in
some areas, potential climate impacts are being incorporated into
the design and siting of facilities [121]. Tradeoffs on multiple
ecosystem services will need to be assessed as highly productive
coastal and wetland regions are sought for aquaculture facilities,
maintenance of biodiversity for wild-caught fisheries [113],
sources of coastal protection [15] and draws for tourism [10].

3.4. Market-based incentives

With the notable exception of fishery catch-shares [122–124]
and a few nascent investment schemes for coastal wetlands (e.g.,
[125,126]), market approaches (including Payment for Ecosystem
Services, or PES) have been used sparingly in marine management
and investment decisions. Nevertheless, PES and other market-
based approaches could be developed further to account more
fully for the impacts of human activities on marine ecosystem
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services. For example, nutrient trading schemes designed to
reduce eutrophication in Chesapeake Bay are slowly getting
underway in Pennsylvania, Virginia, Maryland, and other states;
but significant market and regulatory hurdles remain [127,128].

In a growing number of cases around the world, payments
through user fees or taxes on commercial enterprises are funding
reef and other nearshore habitat protection for the tourism,
coastal protection, and fishery habitat benefits they provide
[129–131]. Belize charges higher taxes for cruise ship lines to
pay for patrolling, research, and stewardship of the coral reef and
mangrove keys that are the primary draw for tourists [132]. The
Great Barrier Marine Park Authority in Australia was a pioneer in
using visitor fees to partially offset maintenance and protection of
reefs and islands within the Park boundary [125]. Many other
marine parks have since followed suit. There are likely to be limits
to environmental market-based approaches for climate adapta-
tion until barriers related to property rights, governance (e.g.,
local to international jurisdiction) and alignment of providers and
beneficiaries in the ocean are lowered [133].

3.5. Relocation

Relocation of human communities is fraught with controversy,
but such strategies already are being applied in more vulnerable
regions around the world. For example, six Alaskan communities
are now planning relocation at a cost of $30–50M per village [95].
Many tropical island nations in the Indo-Pacific are built on low-
lying, narrow coral atolls that are especially vulnerable to sea-
level rise and leave little room for adaptation strategies such as
retreating inland and/or to higher ground. Most of the population
of Kiribati, for example, is concentrated in an urban setting on
Tarawa, much of which is less than 3 m in elevation and less than
half a kilometer wide. Without substantial adaptation, the eco-
nomic impacts of climate change and sea-level rise on Kiribati are
estimated to be equivalent to 17–34% of its 1998 GDP by mid-
century [134]. Kiribati and other island nations are pursuing
multi-pronged adaptation strategies including efforts to protect
coastal infrastructure and limit coastal erosion through, for
example, mangrove replanting. On longer time-scales, population
resettlement to other countries may need to be implemented as a
last resort.
4. Conclusion

In spite of the daunting challenges facing this crowded and
warming planet, there are encouraging signs that human inter-
ventions can be effective in improving the capacity of marine
systems – and the benefits they provide – to adapt to climate
change.

Given the precarious state of global and local economies and
increasing vulnerability of people living near coastlines, linking
market and human wellbeing outcomes to ecosystem protection
and restoration offers hope for sustaining and securing services
from marine systems. For example, information on the sources of
both biophysical and social vulnerabilities of communities to
future climate impacts [19,21,135] can be used to target adapta-
tion strategies towards solutions (e.g., increasing adaptive capa-
city of a community, restoring degraded coastal habitats) that will
make a difference.

Promising examples linking ecosystem change to human well-
being are growing, such as the Coral Triangle Initiative [136], an
integrated strategy to increase the resilience of a marine system
in the face of future climate change. The Initiative is overseen by six
country governments, NGOs, and representatives from the private
sector, and encompasses a population of over 200 million people.
Its main aims are to support the biodiversity protection of coral
reefs, fisheries economies, and food security. A key part of their
strategy is to establish multiple MPAs, increasingly coupled to
exclusive fishing zones, to help secure benefits for local fishers.
These protected areas are designed from the outset to reduce the
region’s vulnerability to climate change by providing coastal protec-
tion, food security, and livelihoods [137–139].

When push comes to shove, policy leaders and individuals will
choose actions that meet immediate material needs for their
communities or families. When connections between actions
affecting marine ecosystems are clearly linked to changes in
human health and wellbeing, and multiple objectives (and thus
tradeoffs) are included up front, climate adaptation strategies will
become management and policy priorities.
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