Appendix Three

Properties of Seawater

A3.1 The Equation of State

It is necessary to know the equation of state for the ocean very accurately to determine stability properties, particularly in the deep ocean. The equation of state defined by the Joint Panel on Oceanographic Tables and Standards (UNESCO, 1981) fits available measurements with a standard error of 3.5 ppm for pressure up to 1000 bars, for temperatures between freezing and 40°C, and for salinities between 0 and 42 (Millero et al., 1980; Millero and Poisson, 1981). The density ρ (in kilograms per cubic meter) is expressed in terms of pressure p (in bars), temperature p (in °C), and practical salinity p S. The last quantity is defined in such a way (Dauphinee, 1980) that its value (in practical salinity units or psu) is very close to the old value expressed in parts per thousand (ppt). Its relation to previously defined measures of salinity is given by Lewis and Perkin (1981).

The equation for ρ is obtained in a sequence of steps. First, the density $\rho_{\rm w}$ of pure water (S=0) is given by

$$\rho_{\rm w} = 999.842594 + 6.793952 \times 10^{-2}t - 9.095290 \times 10^{-3}t^2 + 1.001685$$
$$\times 10^{-4}t^3 - 1.120083 \times 10^{-6}t^4 + 6.536332 \times 10^{-9}t^5. \tag{A3.1}$$

Second, the density at one standard atmosphere (effectively p = 0) is given by

$$\rho(S, t, 0) = \rho_{w} + S(0.824493 - 4.0899 \times 10^{-3}t + 7.6438 \times 10^{-5}t^{2} - 8.2467 \times 10^{-7}t^{3} + 5.3875 \times 10^{-9}t^{4}) + S^{3/2}(-5.72466 \times 10^{-3} + 1.0227 \times 10^{-4}t - 1.6546 \times 10^{-6}t^{2}) + 4.8314 \times 10^{-4}S^{2}.$$
(A3.2)

Finally, the density at pressure p is given by

$$\rho(S, t, p) = \rho(S, t, 0)/(1 - p/K(S, t, p)), \tag{A3.3}$$

where K is the secant bulk modulus. The pure water value K_w is given by

$$K_{\rm w} = 19652.21 + 148.4206t - 2.327105t^2 + 1.360477 \times 10^{-2}t^3 - 5.155288 \times 10^{-5}t^4.$$
 (A3.4)

The value at one standard atmosphere (p = 0) is given by

$$K(S, t, 0) = K_{\rm w} + S(54.6746 - 0.603459t + 1.09987 \times 10^{-2}t^{2} - 6.1670 \times 10^{-5}t^{3}) + S^{3/2}(7.944 \times 10^{-2} + 1.6483 \times 10^{-2}t - 5.3009 \times 10^{-4}t^{2})$$
(A3.5)

and the value at pressure p by

$$K(S, t, p) = K(S, t, 0) + p(3.239908 + 1.43713 \times 10^{-3}t$$

$$+ 1.16092 \times 10^{-4}t^{2} - 5.77905 \times 10^{-7}t^{3}) + pS(2.2838 \times 10^{-3}$$

$$- 1.0981 \times 10^{-5}t - 1.6078 \times 10^{-6}t^{2}) + 1.91075 \times 10^{-4}pS^{3/2}$$

$$+ p^{2}(8.50935 \times 10^{-5} - 6.12293 \times 10^{-6}t + 5.2787 \times 10^{-8}t^{2})$$

$$+ p^{2}S(-9.9348 \times 10^{-7} + 2.0816 \times 10^{-8}t + 9.1697 \times 10^{-10}t^{2}). \text{ (A3.6)}$$

Values for checking the formula are $\rho(0, 5, 0) = 999.96675$, $\rho(35, 5, 0) = 1027.67547$, and $\rho(35, 25, 1000) = 1062.53817$.

Since ρ is always close to 1000 kg m⁻³, values quoted are usually those of the difference ($\rho-1000$) in kilograms per cubic meters as is done in Table A3.1. The table is constructed so that values can be calculated for 98% of the ocean (see Fig. 3.2). The maximum errors in density on straight linear interpolation are 0.013 kg m⁻³ for both temperature and pressure interpolation and only 0.006 for salinity interpolation in the range of salinities between 30 and 40. The error when combining all types of interpolation for the 98% range of values is less than 0.03 kg m⁻³.

A3.2 Other Quantities Related to Density

Older versions of the equation of state usually gave formulas not for calculating the absolute density ρ , but for the *specific gravity* ρ/ρ_m , where ρ_m is the maximum density of pure water. Since this is always close to unity, a quantity called σ was defined by

$$\sigma = 1000((\rho/\rho_{\rm m}) - 1) = (1000/\rho_{\rm m})(\rho - \rho_{\rm m}). \tag{A3.7}$$

Since the value of $\rho_{\rm m}$ is

$$\rho_{\rm m} = 999.975 \ {\rm kg \ m^{-3}},$$
 (A3.8)

A3.4 Specific Heat 601

it follows that σ , as defined above, is related to the $(\rho - 1000)$ values by

$$\sigma = (\rho - 1000) + 0.025,\tag{A3.9}$$

i.e., 0.025 must be added to the values of $(\rho-1000)$ in the table to obtain the old σ value. The notation $\sigma_{\rm t}$ (sigma-t) was used for the value of σ calculated at zero pressure, and σ_{θ} (sigma-theta) for the quantity corresponding to potential density. Another quantity commonly used in oceanography is the specific volume (or steric) anomaly δ defined by

$$\delta = v_s(S, t, p) - v_s(35, 0, p) \tag{A3.10}$$

and usually reported in units of 10^{-8} m³ kg⁻¹.

A3.3 Expansion Coefficients

The thermal expansion coefficient α is given in Table A3.1 in units of 10^{-7} K⁻¹ along with its S derivative. The maximum error from pressure interpolation is two units, that from temperature interpolation is three units, and that for salinity interpolation (30 < S < 40) is two units plus a possible round-off error of two units. The salinity expansion coefficient β can be calculated by using the given values of $\partial \rho/\partial S$.

A3.4 Specific Heat

The specific heat at surface pressure is given by Millero *et al.* (1973) and can be calculated in two stages. First, the value in joules per kilogram per degree Kelvin for fresh water is given by

$$c_p(0, t, 0) = 4217.4 - 3.720283t + 0.1412855t^2 - 2.654387 \times 10^{-3}t^3 + 2.093236 \times 10^{-5}t^4.$$
 (A3.11)

Second.

$$c_p(S, t, 0) = c_p(0, t, 0) + S(-7.6444 + 0.107276t - 1.3839 \times 10^{-3}t^2) + S^{3/2}(0.17709 - 4.0772 \times 10^{-3}t + 5.3539 \times 10^{-5}t^2).$$
 (A3.12)

The formula can be checked against the result $c_p(40, 40, 0) = 3981.050$. The standard deviation of the algorithm fit is 0.074. Values at nonzero pressures can be calculated by using (3.3.1) and the equation of state. The values in Table A3.1 are based on the above formula and a polynomial fit for higher pressures derived from the equation of state by Dr. N. P. Fofonoff. The intrinsic interpolation errors in the table are 0.4, 0.1, and 0.3 J kg⁻¹ K⁻¹ for pressure, temperature, and salinity interpolation, respectively, and there are additional obvious roundoff errors.

A3.5 Potential Temperature

The adiabatic lapse rate Γ is given by (3.6.5) and therefore can be calculated from the above formulas. The definition in Section 3.7.2 can then be used to obtain θ . The following algorithm, however, was derived by Bryden (1973), using experimental compressibility data, to give θ (in °C) as a function of salinity S, temperature t (in °C), and pressure p (in bars) for 30 < S < 40, 2 < t < 30, and 0 :

$$\theta(S, t, p) = t - p(3.6504 \times 10^{-4} + 8.3198 \times 10^{-5}t - 5.4065 \times 10^{-7}t^{2} + 4.0274 \times 10^{-9}t^{3}) - p(S - 35)(1.7439 \times 10^{-5} - 2.9778 \times 10^{-7}t) - p^{2}(8.9309 \times 10^{-7} - 3.1628 \times 10^{-8}t + 2.1987 \times 10^{-10}t^{2}) + 4.1057 \times 10^{-9}(S - 35)p^{2} - p^{3}(-1.6056 \times 10^{-10} + 5.0484 \times 10^{-12}t).$$
(A3.13)

A check value is $\theta(25, 10, 1000) = 8.4678516$, and the standard deviation of Bryden's polynomial fit was 0.001 K. Values in Table A3.1 are given in millidegrees, the intrinsic interpolation errors being 2, 0.3, and 0 millidegrees for pressure, temperature, and salinity interpolation, respectively.

A3.6 Speed of Sound

The speed of sound c_s can be calculated from the equation of state, using (3.7.16). Values given in Table A3.1 use algorithms derived by Chen and Millero (1977) on the basis of direct measurements. The formula applies for 0 < S < 40, 0 < t < 40, 0 with a standard deviation of 0.19 m s⁻¹. Values in the table are given in meters per second, the intrinsic interpolation errors being 0.05, 0.10, and 0.04 m s⁻¹ for pressure, temperature, and salinity interpolation, respectively.

A3.7 Freezing Point of Seawater

The freezing point t_f of seawater (in °C) is given (Millero, 1978) by

$$t_{\rm f}(S, p) = -0.0575S + 1.710523 \times 10^{-3} S^{3/2} - 2.154996 \times 10^{-4} S^2 - 7.53 \times 10^{-3} p. \tag{A3.14}$$

The formula fits measurements to an accuracy of ± 0.004 K.

dc _s	1.37	1.25	1.08 1.06 1.06	1.38 1.35 1.30	1.22	1.36 1.38 1.38 1.38	11.33 13.33 13.34 13.34 13.34
(m s ⁻¹)	1439.7 1449.1 1458.1	1478.7 1489.8 1500.2 1509.8 1518.7	1526.8 1534.4 1541.3 1547.6	1456.1 1465.5 1474.5 1483.1 1495.1	1506.3 1516.7 1526.4 1535.3	1482.3 1491.2 1499.8 1511.8 1489.9 1508.2	1516.2 1516.3 1516.3 1524.8 1524.8 1534.0 1542.7 1542.6 1551.6
99	0000	00000	0000	77777	77778		77999997999
(10 ⁻³ °C)	2000	4000 7000 13000 16000 19000	22000 25000 28000 31000	-2029 -45 -45 1939 3923 6901	9879 12858 15838 18819 -2076	-107 1862 3832 6789 -2140 -186 1771	-2221 -2221 1665 3610 -2316 -386 1546 -2426 -506
$\frac{\partial c_p}{\partial S}$	6.2	, 1, 15, 15, 15, 15, 15, 15, 15, 15, 15,	-4.9 -4.8 -4.8	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	-5.2 -5.1 -5.0 -5.0 -5.5	4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	
^c _p J kg ⁻¹ K ⁻¹	3989 3987 3985	3985 3986 3986 3991 3993	3996 3998 4000 4002	3953 3953 3954 3955	3960 3963 3967 3970 3922	3923 3925 3927 3931 3893 3896 3896	3807 3876 3876 3880 3844 3849 3824 3829 3835
$\frac{\partial \alpha}{\partial S}$ (33 31 28	20 20 17 14	211 6 8	28 28 31 5 27 58 8 8 11 5	18 114 13 28	25 24 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	20 20 20 20 20 20 10 11 12
$(10^{-7} \mathrm{K}^{-1})$	25 4 526 781	1021 1357 1668 1958 2230 2489	2734 2970 3196 3413	552 799 1031 1251 1559	1844 2111 2363 2603 834	1058 1269 1750 1101 1303	1357 1351 1534 1707 1872 1587 1907 1907 1954
$\frac{\partial \rho}{\partial S}$	0.814 0.808 0.801	0.788 0.781 0.775 0.775 0.769	0.760 0.756 0.752 0.749	0.805 0.799 0.793 0.788 0.781	0.774 0.769 0.763 0.759 0.797	0.791 0.786 0.781 0.774 0.783 0.778	0.74 0.776 0.771 0.773 0.769 0.764 0.766 0.766
$\rho - 1000$ (kg m ⁻³)	28.187 28.106 27.972	27.419 26.952 26.394 25.748 25.022	24.219 23.343 22.397 21.384	32.958 32.818 32.629 32.393 31.958	31.431 30.818 30.126 29.359 37.626	37.429 37.187 36.903 36.402 42.191 41.941 41.649	46.658 46.356 46.017 45.643 50.678 50.293 55.305 54.908
t (°C)	7005	7 7 10 113 119 119	3 8 8 5	20047	119 119 120 120 120 120 120 120 120 120 120 120	0041700	4004400000
S	35 35	3 2 2 2 2 2 2	33 33 33	****	32 32 32	******	88888888888888888888888888888888888888
(bar)	0000	00000	0000	100	100 100 100 200	700 700 700 700 700 700 700 700	000 4 4 4 4 4 000 000 000 000 000 000 0