Cruise Report   ONR Japan/East Sea

Hydrographic survey

R/V Professor Khromov  KH36  22 July – 13 August 1999

September 1999, updated May 2006





A. Cruise narrative: summary, investigators, participants                                          

A.1. Highlights: Expedition, Chief Scientist, Ship, Ports of Call, Cruise dates          

A.2. Cruise summary                                                                                                 

A.3. Narrative                                                                                                            

A.4. List of principal investigators                                                                             

A.5. List of cruise participants                                                                                   

B. Description of program and measurement techniques                                           

B.1. Approved program of the expeditionary investigations: Y. Volkov                   

B.2. Report of Head of Expedition:  V. Luchin                                                          

B.3. Masters Report:  I. Kiselev                                                                    

B.4. Meteorological observations: I. Filippov and R. Beardsley                                  

B.5. Report of oceanographic group (CTD, salinity, oxygen):                                               

            B.5.1.V. Luchin (FERHRI) Legs 1 and 2                                                      

            B.5.2 C. Mattson (SIO/ODF techniques and preliminary data) Leg 1           

            B.5.3 M. Johnson (SIO/ODF final calibrated data) Legs 1 and 2                  

B.6. Report on LADCP observations:  N. Rykov, A. Shcherbina                             

B.7. Report of hydrochemical group:  P. Tishchenko                                                

B.8. Report of bio-optical group:  S. Zakharkov                                                        

B.9. Investigation of synoptic eddies over the NW East  Sea:  V. Ponomarev           

Appendix A: CTD data quality comments                                                                 

Appendix B:  Bottle data quality comments                                                                                                      














A. Cruise narrative


A.1 Highlights


Expedition: KH36, Legs 1 and 2

Chief Scientists (Head of Expedition):

            Vladimir Luchin

            Far  Eastern  Regional  Hydrometeorological  Research  Institute  (FERHRI)

            Vladivostok, Russia



            Lynne D. Talley, Scripps Institution of Oceanography, UCSD

            La Jolla, CA USA



Ship: R/V Professor Khromov, Captain I. Kiselev

Ports of Call:

            Pusan, Korea

            Vladivostok, Russia

Cruise dates:

            Leg 1: 22 July 1999 – 25 July 1999

            Leg 2: 25 July 1999 - 13 August 1999


A.2 Cruise summary

a. Cruise track (Fig. A.1)




b. Station sampling

90 (Leg 1 – 9; Leg 2 – 81) CTD/24-bottle rosette stations with LADCP; sampling for temperature, salinity, oxygen, nitrate, phosphate, silicate, nitrite, pH, alkalinity, CFCs.

(1719 bottles tripped)

36 biooptical profiles


CTD station locations and times (WOCE Hydrographic Programme format)


KH36 Japan Sea           Professor Khromov        16 Jul 1999-13 Aug 1999

SHIP/CRS                     UTC EVENT         POSITION                MAX  NO. OF                                                               



90CIKH36/1-2   114      2  072299 1039  35 51.20 N 129 53.20 E  1070  1068      22    CTD#5                         

90CIKH36/1-2   115      1  072299 1618  35 54.20 N 130 33.20 E  1450  1472      19    CTD#5                         

90CIKH36/1-2   116      1  072399 0534  35 56.90 N 131  8.70 E  1100  1049      24    CTD#3                         

90CIKH36/1-2   117      1  072399 1044  36 30.00 N 131  8.50 E  2060  2037      24    CTD#3                         

90CIKH36/1-2   118      1  072399 1539  37  2.80 N 131  8.90 E  2170  2186      22    CTD#5                          

90CIKH36/1-2   119      1  072399 2212  37  0.90 N 130 33.40 E  2207  2186      24    CTD#5                         

90CIKH36/1-2   120      1  072499 0440  36 26.80 N 130 33.00 E  1950  1975      24    CTD#5                          

90CIKH36/1-2   121      1  072499 0838  36 25.10 N 130  9.70 E  1933  1883      24    CTD#5                         

90CIKH36/1-2   122      1  072499 1212  36 25.30 N 129 53.90 E   480   471      13    CTD#5                         

90CIKH36/1-2   123      1  072899 1855  48  0.40 N 141 45.00 E    56    52       7    CTD#5                         

90CIKH36/1-2   124      1  072899 2046  48  0.00 N 141 26.40 E   113   110      14    CTD#5                         

90CIKH36/1-2   125      1  072899 2256  48  0.10 N 141  2.20 E   852   835      15    CTD#5                         

90CIKH36/1-2   126      1  072999 0058  48  0.00 N 140 44.90 E   760   761      17    CTD#5                         

90CIKH36/1-2   127      1  072999 0321  48  0.00 N 140 25.30 E   370   360      18    CTD#5                         

90CIKH36/1-2   128      1  072999 0546  48  0.00 N 139 59.80 E   118   115       8    CTD#5                         

90CIKH36/1-2   129      1  072999 1108  47 10.70 N 139 40.00 E   611   598      15    CTD#5                         

90CIKH36/1-2   130      1  072999 1714  46 37.70 N 138 39.50 E   132   128       8    CTD#5                         

90CIKH36/1-2   131      1  072999 1851  46 33.00 N 138 50.00 E   412   413      10    CTD#5                          

90CIKH36/1-2   132      1  072999 2032  46 29.00 N 139  0.00 E  1105  1087      17    CTD#5                         

90CIKH36/1-2   133      1  072999 2334  46 22.00 N 139 14.80 E  1517  1492      24    CTD#5                         

90CIKH36/1-2   134      1  073099 0248  46 15.00 N 139 30.10 E  1718  1694      23    CTD#5                         

90CIKH36/1-2   135      1  073099 0627  46 12.50 N 139 56.50 E  1302  1288      19    CTD#5                         

90CIKH36/1-2   136      1  073099 1007  46  7.80 N 140 29.70 E  1239  1230      20    CTD#5                         

90CIKH36/1-2   137      1  073099 1337  46  5.90 N 141  0.20 E   550   562      14    CTD#5                         

90CIKH36/1-2   138      1  073099 1548  46  2.90 N 141 18.90 E   130   136       7    CTD#5                         

90CIKH36/1-2   139      1  073099 1831  45 59.70 N 141 39.80 E    76    79       6    CTD#5                         

90CIKH36/1-2   140      1  073099 2108  45 51.70 N 142  2.00 E    41    39       5    CTD#5                         

90CIKH36/1-2   141      1  073099 2215  45 45.10 N 142  1.90 E    61    61      11    CTD#5                         

90CIKH36/1-2   142      1  073199 2105  44 13.00 N 138 10.40 E  1440  1413      24    CTD#5                         

90CIKH36/1-2   143      1  080199 0122  44 26.00 N 137 50.00 E  2400  2406      24    CTD#5                         

90CIKH36/1-2   144      1  080199 0523  44 40.30 N 137 29.90 E  1985  1947      22    CTD#5                          

90CIKH36/1-2   145      1  080199 0831  44 45.90 N 137 19.80 E  1630  1612      24    CTD#5                         

90CIKH36/1-2   146      1  080199 1105  44 52.80 N 137 10.10 E  1045  1018      21    CTD#5                         

90CIKH36/1-2   147      1  080199 1256  44 56.50 N 137  2.30 E   235   231       8    CTD#5                         

90CIKH36/1-2   148      1  080199 2034  44  3.00 N 136 13.40 E   403   405      19    CTD#5                         

90CIKH36/1-2   149      1  080299 0346  43 17.90 N 135 11.80 E   315   334      19    CTD#5                         

90CIKH36/1-2   150      1  080299 0507  43 16.00 N 135 16.80 E  1163  1134      20    CTD#5                         

90CIKH36/1-2   151      1  080299 0718  43 11.90 N 135 21.80 E  3064  3186      24    CTD#5                         

90CIKH36/1-2   152      1  080299 1124  43  0.20 N 135 39.90 E  3492  3494      24    CTD#5                         

90CIKH36/1-2   153      1  080299 1629  42 45.20 N 136  2.90 E  3630  3635      24    CTD#5                         

90CIKH36/1-2   154      1  080299 2102  42 34.90 N 136 19.80 E  2560  2625      24    CTD#5                         

90CIKH36/1-2   155      1  080399 0136  42 10.00 N 136 20.00 E  3600  3650      24    CTD#5                         

90CIKH36/1-2   156      1  080399 0843  41 39.90 N 136 19.90 E  3528  3528      24    CTD#5                         

90CIKH36/1-2   157      1  080399 2340  42 39.90 N 134  0.10 E   287   280      19    CTD#5                          

90CIKH36/1-2   158      1  080499 0046  42 35.00 N 134  0.00 E  1200  1177      21    CTD#5                         

90CIKH36/1-2   159      1  080499 0239  42 30.00 N 134  0.00 E  2650  2670      24    CTD#5                         

90CIKH36/1-2   160      1  080499 0550  42 20.00 N 134  0.00 E  3358  3358      24    CTD#5                         

90CIKH36/1-2   161      1  080499 1032  42  8.90 N 133 59.80 E  3407  3412      24    CTD#5                         

90CIKH36/1-2   162      1  080499 1628  41 50.00 N 133 59.90 E  3547  3554      24    CTD#5                         

90CIKH36/1-2   163      1  080499 2054  41 35.00 N 134  0.00 E  3542  2051      24    CTD#5                         

90CIKH36/1-2   164      1  080599 0013  41 20.10 N 133 59.70 E  3530  3538      24    CTD#5                         

90CIKH36/1-2   165      1  080599 0420  41  5.00 N 133 59.90 E  3536  3536      24    CTD#5                         

90CIKH36/1-2   166      1  080599 1013  41 14.90 N 134 40.00 E  3575  3572      24    CTD#5                         

90CIKH36/1-2   167      1  080599 1412  41 15.00 N 134 26.40 E  3510  2062      18    CTD#5                         

90CIKH36/1-2   168      1  080599 1659  41 15.00 N 134 13.50 E  3552  3554      24    CTD#5                         

90CIKH36/1-2   169      1  080599 2025  41 15.10 N 134  3.10 E  3539  3542      24    CTD#5                         

90CIKH36/1-2   170      1  080699 0030  41 16.20 N 133 52.90 E  3510  3533      24    CTD#5                          

90CIKH36/1-2   171      1  080699 0418  41 15.00 N 133 40.40 E  3500  2001      24    CTD#5                         

90CIKH36/1-2   172      1  080699 0656  41 14.80 N 133 26.70 E  3502  3503      24    CTD#5                         

90CIKH36/1-2   173      1  080699 1256  40 50.00 N 133 59.90 E  3524  3532      24    CTD#5                         

90CIKH36/1-2   174      1  080699 1657  40 40.00 N 134  0.10 E  3493  2057      19    CTD#5                         

90CIKH36/1-2   175      1  080699 1944  40 30.00 N 134  0.00 E  3140  3135      24    CTD#5                         

90CIKH36/1-2   176      1  080699 2338  40 19.80 N 134  0.40 E  2450  2461      24    CTD#5                         

90CIKH36/1-2   177      1  080799 0227  40 10.00 N 134  0.00 E  1100  1111      20    CTD#5                         

90CIKH36/1-2   178      1  080799 0428  40  0.10 N 134  0.00 E  1030  1008      23    CTD#5                         

90CIKH36/1-2   179      1  080799 1738  38 35.80 N 131 14.80 E  1213  1224      18    CTD#5                         

90CIKH36/1-2   180      1  080799 1954  38 46.30 N 131 18.20 E  2598  2616      24    CTD#5                         

90CIKH36/1-2   181      1  080799 2332  38 56.10 N 131 19.00 E  3071  3059      24    CTD#5                         

90CIKH36/1-2   182      1  080899 0357  39 17.10 N 131 25.20 E  3040  3064      24    CTD#5                         

90CIKH36/1-2   183      1  080899 0845  39 40.00 N 131 28.90 E  3083  3076      24    CTD#5                          

90CIKH36/1-2   184      1  080899 1337  40  5.00 N 131 34.90 E  3200  3247      24    CTD#5                         

90CIKH36/1-2   185      1  080899 1744  40 20.20 N 131 35.20 E  3311  3313      24    CTD#5                         

90CIKH36/1-2   186      1  080899 2153  40 34.80 N 131 35.30 E  3320  3323      24    CTD#5                         

90CIKH36/1-2   187      1  080999 0156  40 50.00 N 131 35.10 E  3300  3330      24    CTD#5                         

90CIKH36/1-2   188      1  080999 0755  40 30.00 N 132 15.50 E  3387  3386      24    CTD#5                         

90CIKH36/1-2   189      1  080999 1123  40 29.90 N 132  2.60 E  3360  3367      24    CTD#5                         

90CIKH36/1-2   190      1  080999 1507  40 30.10 N 131 52.00 E  3300  3350       9    CTD#5                         

90CIKH36/1-2   190      3  080999 1913  40 30.80 N 131 50.80 E  3348  3349      24    CTD#5                         

90CIKH36/1-2   191      1  080999 2313  40 30.40 N 131 43.00 E  3335  3336      24    CTD#5                         

90CIKH36/1-2   192      1  081099 0238  40 30.00 N 131 33.10 E  3300  3322      24    CTD#5                         

90CIKH36/1-2   193      1  081099 0637  40 29.80 N 131 22.60 E  3309  3308      23    CTD#5                         

90CIKH36/1-2   194      1  081099 1101  40 30.10 N 131 10.10 E  3238  3236      24    CTD#5                         

90CIKH36/1-2   195      1  081099 1700  41  5.10 N 131 35.10 E  3343  3342      24    CTD#5                          

90CIKH36/1-2   196      1  081099 2116  41 19.70 N 131 34.80 E  3326  3314      24    CTD#5                                                            Restart 1.33 hour later 

90CIKH36/1-2   197      1  081199 0332  41 50.00 N 131 35.00 E  3100  3137      24    CTD#5                         

90CIKH36/1-2   198      1  081199 0855  42 14.10 N 131 34.80 E  2750  2708      22    CTD#5                         

90CIKH36/1-2   199      1  081199 1211  42 20.40 N 131 35.60 E  2090  2010      21    CTD#5                         

90CIKH36/1-2   200      1  081199 1448  42 22.80 N 131 35.10 E   900   805      18    CTD#5                         

90CIKH36/1-2   201      1  081199 1640  42 25.20 N 131 35.30 E   215   204       9    CTD#5                         

90CIKH36/1-2   202      1  081199 1745  42 28.40 N 131 35.00 E   101    97       7    CTD#5                         

90CIKH36/1-2   203      1  081199 1853  42 33.30 N 131 35.10 E    68    67       6    CTD#5                         


c. Underway sampling


Surface temperature and salinity



d. Floats

32 profiling ALACE floats ballasted to 800 meters


A.3 Narrative

See Section B.2.1 for a detailed summary of the two legs of the cruise.

Three separately funded sampling programs were aboard: CTD/rosette/chemistry, bio-optical sampling, and meteorology using the WHOI ASIMET system. Two CTD/rosette systems were aboard, both with 24 bottles. The primary sampler carried 24 10-liter bottles, CTD#5, the Lowered Acoustic Doppler Current Profiler (LADCP), and transmissometers. Because of its size, this was deployed from the fantail using the A-frame. The secondary sampler carried 24 1.7-liter bottles and CTD#3, and was deployed from the port side from the normal position for hydrographic casts on the Khromov; it was meant for rough weather. The test cruise consisted of 9 stations in the Ulleung Basin, with the primary purpose of establishing procedures and setup on the Khromov. Because the positions had to be chosen in advance of the R/V Revelle cruises for Korean clearance purposes, they were not at exactly the same locations as the Revelle stations in the Ulleung Basin. The primary cruise leg covered the Russian sector of the Japan/East Sea. The purposes of the cruise leg were to map the water properties and geostrophic circulation of the Japan/East Sea from top to bottom, the bio-optical properties, and the plankton distribution. The water properties and circulation of the Japanses and Korean sectors were measured in a companion cruise on the R/V Revelle (HNRO7), immediately preceding the Khromov cruise.

CTD/rosette station sampling was to the bottom at most stations, with the exception of several stations in the highly-resolved eddies. Most stations were separated by 10 to 30 nautical miles. The station pattern covered most of the Russian sector. Stations on the northern part of Yamato Rise repeated stations from the Revelle cruise. On most stations, 24 samples were collected from top to bottom. Maximum bottle spacing in the deep waters was 250 meters with some exceptions. Most sampling in the upper waters was based on the many features in the CTD salinity and oxygen and the transmissometer. An altimeter on the CTD/rosette frame was used for the bottom approach on most stations. A lowered acoustic doppler current profiler was used on all stations employing the large rosette (CTD#5).


A.4 List of principal investigators

1. Vladimir Luchin (FERHRI) and Lynne Talley (SIO/UCSD): Temperature, salinity, oxygen, nutrients (CTD and rosette)

2. Nikolay Rykov (FERHRI), Lynne Talley (SIO/UCSD) and Peter Hacker (UH): Lowered Acoustic Doppler Current Profiling

3. Pavel Tishchenko (POI):  Alkalinity, pH

4. Kyung-Ryul Kim (SNU): Alkalinity, pH, Carbon 14, Delta 18O, Surface pCO2/T/S/chlorophyll

5. William Jenkins (SOC): Delta 18O, Helium-3, tritium, neon, argon, krypton

6. Mark Warner (UW): Chlorofluorocarbons (experimental procedure, not analyzed)

7. Sergei Zakharov (POI) and Greg Mitchell (SIO/UCSD): Water particle size, absorption, pigments, bio-optics

8. Robert Beardsley (WHOI): meteorology

9. Igor Filippov (FERHRI): meteorology


A.5. List of cruise participants


Leg 1 only

1.       Lynne Talley (SIO) – Chief scientist

2.       David Newton (SIO) - Programmer, LADCP, deck watch

3.       Carl Mattson (SIO/ODF) -  ODF Tech-in-Charge/Electronics/Deck watch

4.       Doug Masten (SIO/ODF) - Nutrient analyst/data processing

5.       Ron Patrick (SIO/ODF) - Oxygen/Bottle data

6.       Dong-Jin Kang (SNU) - underway chemistry, CO2 (pH by spectro.)

7.       Doshik Hahm (SNU) - CO2 (pH by spectro.)

8.       Mark Warner (U. Washington) - CFC

9.       DongHa Min (SIO) - CFC

10.    Clare Postlethwaite (IOS, Southampton) - helium, tritium, neon, argon



Legs 1 and 2

1.       Vladimir Luchin (FERHRI) -  Chief scientist; CTD/rosette operations, CTD console

2.       Alexander Nedashkovskiy (POI) -  Nutrients

3.       Sergey Sagalaev (POI) - Oxygen

4.       Michael Gorelkin (FERHRI) -  Salinity

5.       Igor Titov (FERHRI)  - Electronics, Deck watch

6.       Nikolay Rykov (FERHRI) -  CTD/rosette operations

7.       Vladimir Kraynev (FERHRI) - CTD/rosette operations

8.       Igor Zhabin (POI) -  CTD/hydrographic data management, software, processing,Deck

9.       Vladimir Ponomarev (POI)- CTD/hydrographic data management, software, processing

10.    Pavel Tishchenko (POI) - POI chemistry head, CO2 (pH by EMF)

11.    Ruslan Chichkin (POI) - CO2 (pH by EMF)

12.    Elena Il'ina (POI) - CO2 (Alkalinity)

13.    Maria Shvetsova (POI) -  CO2 (Alkalinity)

14.    Sergei Zakharkov (POI) - Bio-optics

15.    Andrey Shcherbina (SIO) LADCP

16.    Galina Pavlova (POI) CO2

17.    T. Volkova (POI) CO2

18.    Olga Shevtsova (POI) CO2

19.    Yuri Shulga (POI) CO2

20.    A Kalyagin (POI) noble gas

21.    O.Vereschagina (POI) CFCs

22.    Alexi Sherbinin (FERHRI) Deck

23.    Sergey Yaroshev (FERHRI) Deck

24.    Mikhail Danchenkov (FERHRI) PALACE

25.    Igor Filippov (FERHRI) METEOROLOGY

26.    K. Zhevrov (FERHRI) Salinity

27.    A Sevastyarov (FERHRI) PLT

28.    Anatoly Lemecha (FERHRI) Deck


Institution acronyms

FERHRHI - Far-Eastern Regional Hydrometeorological Research Institute, Vladivostok, Russia

SOC - Southampton Oceanograpy Centre, Southampton, UK

KORDI - Korea Ocean Research and Development Institute, Seoul, Korea

POI - Pacific Oceanological Institute, Far Eastern Branch Russian Academy of Sciences, Vladivostok, Russia

SIO - Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA USA

SIO/ODF - SIO Oceanographic Data Facility

SNU - Seoul National University, Seoul, Republic of Korea

UW - University of Washington, School of Oceanography, Box 357940, Seattle, WA 98195 USA

UH – University of Hawaii, Honolulu, HI USA

WHOI - Woods Hole Oceanographic Institution, Woods Hole, MA USA

B. Description of program and measurement techniques


B.1. Approved program of the expeditionary investigations  (Y. Volkov, FERHRI)





    Far  Eastern  Regional  Hydrometeorological  Research  Institute  (FERHRI)




Expedition  in  the  East  Sea

Cruise  36  on  the  R/V  “Pr.  Khromov”

(July  -  August  1999)


Vladivostok  1999


1.  Registered  number  of  approval  to  conduct  the  expedition


            The  expeditionary  investigations  in  the  East  Sea  in  the  cruise  36  on  the  R/V  “Pr.  Khromov”  is  being  conducted  within  the  frame  of  program  “The  Seas  of  Russia”  and  International  project  CREAMS  (Circulation  Research  of  the  East  Asian  Marginal  Seas)  on  the  basis  of  agreement  being  concluded  between  FERHRI  ROSHYDROMET  and  Washington  University  (Seattle,  USA)  of  12.  03.  1999  and  approval  for  the  cruise  implementation    009 – 4/384  of  08.  12.  1998.


2.  Period  of  works


            The  cruise  of  26  days  duration  is  to  be  conducted  in  the  East  Sea  within  the  economic  zones  of  Republic  of  Korea  and  Russia  from  July  16  till  August  11,  1999.


3.  Ports  of  call


            In  order  to  embark/disembark  the  foreign  specialists,  to  load  scientific  equipment  and  to  bunker  with  fresh  water,  two  calls  at  the  port  of  Pusan  (Republic  of  Korea)  have  been  planned.  The  foreign  specialists  will  bee  disembarked  at  p.  Pusan  on  the  work  completion  within  the  economic  zone  of  Korea  (21 – 25. 07.),  the  within  the  Russian  economic  zone  the  observations  will  be  conducted  by  the  Russian  specialists.


4.  The  name  of  the  vessel  or  any  marine  craft  on  which  head  of  expedition  will  be  present


            Head  of  expedition  will  be  on  the  R/V  “Pr.  Khromov”,  displacement  2140  tons,  built  in  1983  (Finland).


5.  Communication


            In  the  cruise  the  following  communication  is  to  be  used

-  radio/telephone,

-  short  waves  approved  for  the  ship  radiostation,

-  Ultra Short Waves  -  international  frequencies.


6.     Main  objectives


The  expeditionary  investigations  are  being  conducted  for  the  aim  of

  -  determination  of  the  full  vertical  structure  of  the  main  components  of  the  East  Sea  circulation,  including  the  Liman  current,  Eastern  Korean  warm  current,  Tsushima  current,  as  well  as  the  possible  deep-sea  west  boundary current  and  other  components  of  the  deep-sea  circulation  that  is  likely related  to  the  subsurface  circulation;

-  study  of  formation  conditions  and  subpolar  front  development  in  the  central  part  of  East  Sea  and  bottom  topography  possible  influence,

-  obtaining  of the  complete  synoptic  picture  for  vertical  interstratification

structure  over  the  East  Sea,

-  determination  of  possibility  to  use  chemical  tracers including nutrients, DO  and  freons  so  that  to  reveal  the  main  elements  of  large-scale circulation  and  assessment  of  the  North-West  and  North  parts  of  East Sea  in  renewal  of  the  intermediate  and  deep  sea  waters;

-       vertical  structure  study,  at  least,  of  the  eddy  in  the  subpolar convection  region  or  subpolar  front,  and  one  more  in  the  Eastern-Korean  warm  current  southward  the  subpolar  front.


In  order  to  obtain  the  above  mentioned,  the  objectives  to  be  solved are  as  follows:

-       to  carry  out  the  oceanographic  survey  in  the  North-West  East  Sea making  measurements  of  temperature,  salinity  and  sampling  for chemical analysis;

-       to  conduct  a  set  of  hidrometobservation.


7.     Types  of  standard  and  special  observations  and  works  conducting in  the  cruise  to  solve  the  tasks.


7.1.  Standard  observations:


In  the  cruise  a  complex  of  standard  hydrometeorologic,  oceanographic  and  hydrochemical  observations  are  being  conducted.


7.2.  Special  observations


7.2.1.        Sampling  of  sea  water  to  determine  the  chemical  tracer  content  (C14,  O18,  freons,  He-3,  T,  Ne,  Ar,  Kr).


8.  Volume  of  works  and  observations,  addresses  and  term  for  information  to  be  transferred,  including  international  exchange.


8.1.  Meteorological  observations


            In  the  cruise  a  complex  of  standard  hydrometeorological  observations  on  the  program  of  the  vessel  station  of  class  2  as  to  “Metodical  instructions…”  GGO,  parts  I – II,  issue  1983  are  being  produced.

            In  addition  to  the  complex  mentioned  the  following  is  being  produced

-       observation  of  anomalous   events  in  the  atmosphere;

-       visual  observation  of  sea  water  petroleum  pollution  and  oil  products.



1.  Transferring  of  meteorological  observationsby  KN-01  in  the  address  of  “Moscow - Weather”,  “Vladivostok - Weather”,  “Vladivostok – 213421-Thunderstorm  HMC  and  foreign  RMC  on  the  vessel  way  for  4  basic  terms.

2.      Transferring  of  storm  warning  and  data  on  hazard  events  is  being  produced  by  the  open  text  in  address  of  “Vladivostok - Weather”,  “Moscow – Weather”.


8.2.     Oceanographic  observations


8.2.1.     Oceanographic  stations  on  the  sections  are  being  carried  out  through  out  the  bottom.

8.2.2.     Observations  at  the  stations

-       t oC  and  salinity  measurements  by  CTD  probe  throughout  the  depth  of  each  station  probing;

-       sea  water  sampling  for  hydrochemical  analysis  at  the  level  of  10,  20,  30,  50,  75,  100,  125,  150,  200,  250,  300,  400,  500,  600,  700,  800,  1000,  1200,  1500,  2000,  2500,  3000  at  the  each  station;

-       sea  water  color  and  transparence  determination  on  the  light  time  of  a  day.


            Transferring  of  data  on  sea  t oC  and  salinity  at  the  levels  by  KN-05,  KN-06  in  the  address  of  “Moscow – Weather”,  “Vladivostok – Weather”,  “Vladivostok – 213421 – thunderstorm  HMC”.


9.  Devices  and  equipment  used,  including  additional  ones.


-       standard  hydrometeorological  devices;

-       air  probing  station  “Vaisala”;

-       hydroprobing  “SBE 911  plus  CTD”  with  24,  10L  water  sample  bottle;

-       salinometer  “Autosal  8400A”;

-       installation  “Biamperometric  DO  Titrator”  to  determine  dissolved  O2  and  total  alkalinity;

-       automatic  analyzer  “Technicon”  to  determine  nutrients;

-       analyzers  to  determine  content  of  CO2  and  freons;

-       PC.


10.    Procedure  of  obtained  results  processing


Data  on  CTD  measurements  obtained  in  the  cruise  are  being  processed  on  the  vessel  in  operative  regime.

Hydrochemical  analysis  of  the  water  samples  are  being  carried  out  partially  on  board  and  partially  at  the  coastal  laboratories.

            On  processing  all  results  obtained  are  being  recorded  in  the  special  formats  and  carriers.


11.  Terms  of  copies  on  observations  for  environmental  parameters  transfer  at  Russian  State  fund  of  data  on  environment


11.1.  On  the  date  of  the  vessel  arrival  the  cruise  report  (3  copies)  is  being  presented  at  the  Marine  Department  and  Base  of  Fleet  by  Master  and  Head  of  expedition.  The  cruise  report  after  its  control  by  Departments  mentioned  above  is  being  sent  at  ROSHYDROMET.

11.2.  Scientific  report  including  analysis  of  the  work  carried  out  and assessment  of  the  data  quality  (2  copies,  including  original)  is  being  given  in  library  of  FERHRI.

Data  on  observations  after  analysis  at  the  coastal  laboratories  are  being  presented  at  Regional  Oceanographic  data  Center.

Terms  of  information  providing  is  determined  by  agreement  of  the  parties  for  the  data  exchange.


12.  Information  on  RF  representative  authorized  by  Ministry  of  Science  RF


The  representative  participation  in  the  cruise  is  not  considered.


13.             Information  on  hydrometeorological  observations  and  environment  pollution


13.1.  The  operative  information  processing  and  propagation  is  being  produced  during  the  cruise  under  the  requirements  existing  and  transferred  in  the  addresses  painted  out  after  each  type  of  observations  within  the  present  program.

13.2.  Tables  of  the  results  of  sea  water  pollution  with  oil  products  are  being  sent  to  Monitoring  Department  FERHRI.





14.             Participants  of  the  expedition


To  solve  the  tasks  of  the  program  the  following  specialists  will  take  part  in  the  cruise  FERHRI  -  10  persons,  PIO  -  14,  USA  -  9,  Republic  of  Korea  -  2.






Director  of  FERHRI                                                 Yu.  Volkov








B.2.  Report  of  head  of  expedition  (V. Luchin, FERHRI)


B.2.1  Progress  and  details  of  the  cruise  implementation


Expedition  cruise  36  on  the  R/V  “Professor  Khromov”  was  being conducted  on  the  program  of  the  seventh  joint  Russian – Korean  expedition  within  the  frame  of  international  project  creams  under  the  plans  of  operative  and  productive  works  and  international  scientific  cooperation  of  ROSHYDROMET  on  the  basis  of  agreement  between  FERHRI  and  University of Washington and  Scripps  Institution  of  Oceanography  California  University  USA  of  12. 03. 1999  and  approval  for  the  cruise  N  OC9 – 4/162  of  23. 04. 1999.

Expedition  investigations  have  been  conducted  so  that  to  obtain  the  natural  data  for

-       determination  of  full  vertical  structure  of  the  main  circulation  components  in  the  East  Sea,  including  the  Liman  current,  Eastern – Korean  warm  current,  Tsushima  current,  as  will  as  the  deep  boundary  current  and  other  deep  circulation  components;

-       study  of  formation  conditions  and  subpolar  front  development  in  the  central  part  of  East  Sea  and  bottom  topography  possible  influence;

-       obtaining  of  the  complete  synoptic  picture  for  vertical  interstratification  structure  over  the  East  Sea

-       determination  of  possibility  to  use  chemical  tracers  including  nutrients,  dissolved  oxygen,  freons  so  that  to  reveal  the  main  elements  of  large – scale  circulation  and  assessment  of  North-West  and  North  parts  of  East  Sea  in  renewal  of  the  intermediate  and  deep  sea  waters;

-       vertical  eddy  structure  study  in  subpolar  convective  region  and  subpolar  front.


In  order  to  obtain  the  above  mentioned  the  objective  to  be  solved  are  as  follows

-       to  carry  out  the  oceanographic  survey  of  deep  sea  regions  in  South –West,  central  and  northern  part  of  East  Sea  with  making  measurements  of  t oC  and  salinity  by  CTD – probe  and  sampling  of  water  for  the  chemical  analysis;

-       to  conduct  a  set  of  standard  hydrometeorological  on  the  program  of  the  vessel  station  of  class  II,  as  well  as  additional  observations  on  the  anomalous  events  in  the  atmosphere  and  sea  water  oil  and  oil  products  pollution;

-       to  process  and  record  on  the  carries  all  kinds  of  observations;

-       to  prepare  the  scientific  report  including  all  types  of  studies.


The  R/V  “Professor  Khromov”  went  into  the  cruise  36  on  July  16,  99  and  proceeded  to  the  port  Pusan  to  embark  the  researchers  and  to  load  the  scientific  devices.

On  July  22  loading  on  board  the  expedition  equipment  and  embarking  the  specialists  from  USA  and  Republic  Korea  the  vessel  left  Pusan  and  proceeded  in  the  region  of  work  in  South–West  East  Sea  (Uleung  Basin).

In  the  region  mentioned  from  July  22  till  July  24  there  were  carried  out  9  oceanographic  stations.  Further  the  vessel  went  to  Pusan  to  disembark  the  foreign  participants  of  the   cruise  on  leaving  Pusan  the  following  works  were  produced

-25-29.07      -  transition  to  the  Tatar  Strait;

-29.07           -  section  across  48 0 00 N,  from  141 0 45  to  140 0 00 E;

-29-30.07      -  transition  to  position  46 0 38 N,  138 0 40 E;

-30-31.07      -  section  from  position  46 0 38 N,  138 0 40 E  to  46 0 00 N  141 0 40 E;

-31.07           -  section  in  the  Laperuz  Strait;

-31.07-01.08 -  transition  to  position  44 0 13 N,  138 0 10 E;

-01-02.08      -  section  from  position  44 0 13 N,  138 0 10 E  to  44 0 57 N  137 0 03 E;

-02.08           -  transition  to  position  43 0 18 N,  135 0 12 E;

-02-03.08      -  section  from  position  43 0 18 N,  135 0 12 E  to  41 0 40 N  136 0 20 E;

-03-04.08      -  transition  to  position  42 0 40 N,  134 0 00 E:

-04-07.08    -  section  across  134 0 00 E  from  42 0 40  to  40 0 00 N,  including  section  through  the  eddy  across  41 0 15 N  from  134 0 40  to  133 0 27 E:

-07-08.08      -  transition  to  position  38 0 36 N,  131 0 15 E;

-08-09.08      -  section  from  position  38 0 36 N,  131 0 15 E  to  40 0 05 N  131 0 35 E;

-09-12.08    -  section  across  131 0 35 E  from  40 0 05  to  42 0 33 N,  including  section  through  the  eddy  across  40 0 30 N  from  132 0 15  to  131 0 10 E;

-12.08           -  analysis  completion  and  information  processing;

-13.08           -  arrival  at  Vladivostok.

            The  weather  conditions  during  the  first  twenty  days,  mainly,  are  not  favorable  for  the  work  planned  to  be  performed.  The  persistent  wind  was  from  10  to   15  m/s,  the  sea  waves  made  difficulties  in  producing  of  the  oceanographic  stations  because  of  the  heavy  rolling  and  pitching.

            The  weather  conditions  of  the  last  cruise  week  were  favorable  for  o  work.


            Program  of  work  has  been  made  completely,  excluding  3  missed  oceanographic  stations  that  were  in  the  territorial  waters  of  Japan.  In  the  cruise  the  content  of  carbon  dioxide  was  being  measured  continuously  in  the  sea  surface  layer.  The  sea  water  sampled  from  the  engine  pipeline  and  with  the  help  of  thermoisolated  hose  it  reached  the  hydrology  laboratory  where  the   measurement  of  the  carbon  dioxide,  chlorofile,  t0C  and  salinity  were  done.

            Hydrometeorological  observations  have  been  performed  4  per  a  day  at  00,  06,  12,  and  18  hours  GMT.

            In  the  cruise  36  2  Korean,  24  Russian  and  9  specialist  of  USA  took  part.

            Scientific  equipment

-       standard  hydrometeorological  equipment;

-       probing  station  of  the  atmosphere  “Vaisala”;

-       hydroprobe  “SBE 911 plus CTD”  with  24  10L  bottles

-       salinometer  “Autosal  8400A”;

-       “Biamperometric  D.O.  Titrator”  to  determine  the  dissolved  oxygen  and  the  total  alkalinity;

-       automatic  analyzer  “Technicon”  to  determine  the  nutrients;

-       analyzers  to  determine  CO2,  freons;

-       computers


B.2.2 Volume of work, actual cruise program implementation


Approved program has been made completely taking into account some amendments produced by the proposal of POI and Scripps Institution regarding the order of the route  going in the area of eddy polygons.

Figures A.1 and B.2.1 and accompanying station list of the present report show the route of the vessel going and station positions.

Figure B.2.1 Cruise track of the R/V Professor Khromov, KH36 (16 July – 13 August 1999).


In the  cruise  the  following  type  and  number  of  observations  have  been  carried  out

Oceanographic  stations  including  t0C  and  salinity

measurements  by  CTD  probe  from  surface  to  the  bottom                   -     90;

Sea  water  samples  to  determine

-salinity                                                          -     90  station,  1719  samples;

-dissolved  oxygen                                         -                      90  st.,  1719  s.;

-pH                                                                 -                      88  st.,  1200  s.;

-total  alkalinity                                              -                      88  st.,  1200  s.;

-silicate                                                           -                      90  st.,  1719  s.;

-phosphate                                                      -                      90  st.,  1719  s.;

-nitrate                                                            -                      90  st.,  1719  s.;

-nitrite                                                            -                      90  st.,  1719  s.;

-freons                                                            -                      51  st.,    681  s.;

-helium                                                           -                      37  st.,    325  s.;

-tritium                                                           -                        34  st.,  278  s.;

-O18                                                                 -                        40  st.,  325  s.;

-C14                                                                 -                          5  st.,    54  s.;

-chlorophile                                                    -                                      89  s.;

Biooptical  observations

-spectrum  suspension  absorption                 -                        36  st.,  192  s.;

-spectrum  of  dissolved  substance               -                           8  st.,   44  s.;

-content  of  chlorophile  “a”                         -                        36  st.,  188  s.;

-content  of  suspended  organic  matter        -                        33  st.,  141  s.;

-sea  water  transparence  within  the  red  and  blue  spectrum  field -90 st.;

-sea  water  transparence  on  Sekki’s  disk     -                                    28  st.;

-urgent  hydrometeorological  observations   -                                          86;

-storm  warning                                              -                                             3.


            On the cruise completion and under agreement between parties participants in the expedition, the Russian and American Parties have been presented the data of CTD probe  “SBE 911 plus CTD” measurements  altogether with  information of hydrometeorological  observations.

            Data on the current measurements using LADCP, sea water hydrochemical analyses and continuous measurements of CO2 content will be transferred to the Russian Party on processing completion in the coastal laboratories of Seoul National University and Scripps  Institution of  Oceanography  California  University  USA.

            The cruise program is fully completed.  Data have been recorded on the carriers and transferred in Regional Center of Oceanography data and library of FERHRI.


B.2.3 Description of scientific and technical group work and crew in the expedition regarding the cruise program implementation.


            Well coordinated work and full understanding of all scientific groups and the ship  departments allowed to solve all tasks in due time.


B.2.4  The  most  important  results  obtained


The  basic  result  of  the  cruise  is  the  comprehensive  oceanographic  data  massive  obtaining  (hydrophysical,  hydrochemical,  biooptical,  current  speed,  inert  gas  content  and  so  on)  on  the  up-to-date  level.

For  the  first  time  in  the  North  and  North-West  part  of  the  East  Sea  detailed  instrumental  current  measurements  and  other  oceanographic  features  measurements  from  the  sea  surface  to  the  bottom  have been  performed.  Measurements  and  sea  water  sampling  at  the  near  bottom  levels  have  been  produced  by  4-8  meter  over  the  bottom.

High  accuracy  measurement  data  of  hydrophysical  and  hydrochemical  parameters  allow  to  clarify  essentially  the  spatial  structure  of  water  masses.  They  will  be  very  useful  as  standard  data  on  choosing  criteria  to  estimate  the  massive  quality  of  historic  oceanographic  information.  The  results  obtained  will  be  used  to  solve  the  problem  of  intermediate  deep  water  formation  in  the  East  Sea.

The  preliminary  analysis  of  the  data  obtained  in  the  cruise  showed  that  the  Tsusima  current  effect  is  not  limited  by  the  sea  part  southward  of  the  subpolar  front.  This  water  effect  is  being  marked  along  all  the  East  Sea  water  area.  In the  layer  of  1000–2000  meter  there  are  fixed  the 

waters  of  the  lower  salinity  estimations  (less  than  34,066  0/00).  It  is  likely  due  to  the  convective  processes  in  the fall winter  period  and  further  water  transformation  in  accordance  with  their  migration  within  the  limits.

            The  current  measurements  obtained  allow  to  clarify  and  add  information  available  on  the  elements  of  total  sea  water  circulation  and  more  detail  investigate  the  dynamic  processes  taking  place  in  synoptic  eddies  the  obtained  preliminary  results  are  an  evidence  that  the  anticyclone  current  system  in  the  eddies  studied  propagates  to  the  near  bottom  levels  (about  3000-3200  m.).

            Biooptic  data  allow  to  establish  the  models  describing  the  level  of  the  primary  organic  matter  producing  in  the  East  Sea.

            At  some  oceanographic  stations  in  the  region  studied  with  the  depths  to  3000 m  and  lower  there  has  been  registered  not  high  but  analytical  essential  silicate  decreasing  at  the  near  bottom  levels.

            Nitrite  content  in  the  sea,  excluding  the  layer  of  100-200  m  is  to  analytical  zero.  At  the  same  time  at  some  stations  in  the  near  bottom  layer  (at  the  level  of  1000-2000  m)  there  has  been  recorded  the  persistent  nitrite  presence.


B.2.5 Recommendations  on  improvement  of  the  expedition  arrangement  and  the  vessel  equipment


The  experience  of  expeditionary  works,  carried  out  in  the  cruise,  shows  that  under  favourable  weather  conditions  the  vessel  is  enough  suitable  to  produce  oceanographic  observations  on  planning  the  cruise  it  is  necessary  to  consider  more  time  to  produce  deep  sea  oceanographic  stations  and  storm  weather  conditions.



B.3. Masters Report:  I. Kiselev


B.3.1. Cruise navigation peculiarities.


The vessel route of the cruise 36 took place in the central part of the East Sea, well studied regarding the navigation problems. Fig. 2.1 & tabl. 2.1 show the actual vessel route & positions of oceanographic stations taking into account some amendments made by the Japan party regurst.

            The weather conditions in the cruise, mainly, didn't hinder to conduct the studies planned.

            In the cruise the synoptic data have been received regularly. Navigation charts & manuals for sailing have been corrected by requirements IM, PRIP, NAVIP, NAVAREA. The requirements of good marine practice have been user. The control on the vessel hull non water permeability & stability has been produced continuously.

            On July 18 at 10-40 o/clock the vessel arrived at the pilot anchorage of the p.Pusan & at 11-50 o/clock was put along Yong-Ho berth near by the r/v “Roger Revelle” USA.

            On July 22 at 14-00 after taking on board the Russian specialists {14 persons}, the American & Korean specialists {10 persons}, two Navy observers of  R.Korea as well as expeditional equipment ship left the p.Pusan & proceeded in the region of the work in the Korean economic zone.

On July 25 at 09-00 on the joint expeditional stage completion, the vessel came back to Pusan to disembark the foreigner participants of expedition & at 10-10 it was put along the passenger berth 1.

On July 25 at 19-00 after bunkering with the fresh water, the vessel left Pusan & proceeded in the Tatar Strait.

On August 13 at 08-00 on the oceanographic survey completion on the sections in the North & central parts of East Sea & eddy polygons the vessel arrived at the inner road of the port Vladivostok.


B.3.2. Methods & accuracy of the vessel position determination


To determine the vessel position the following technical devices have been use:

-       HCC ”NAVSTAR XR-4”, {Gold Star, R. Korea};

-       Radar “OKEAN”, 3 sm {Russia};

-       Radar “OKEAN”, 10 sm {Russia};

-       Radar “FURUNO”, 3 sm {Japan};

-       Giro compass “VEGA-2” {Russia};

-       Doppler lag “FURUNO” {Japan};

-       Echo sounder “NAL-M-3B”, 500 m depth {RUSSIA};

-       Echo sounder “ELAK ENIF”, 15000 m depth {Germany}.

Within radiolocation visibility of the coastal things the position determination has been produced by radar. Off shore the main device to fix the place was HCC “NAVSTAR XR-4”.

All available on board navigation equipment was reliable operation in the cruise & ensured accuracy of the place position & depth required to sample the sea water.


B.3.3. Peculiarities in the expedition work


Having strong wind more than 10 m/s, decreasing the angle of wire cable declination & ensuring the water samples of great volume, in addition, avoiding damage of equipment & devices having heavy rolling, few oceanographic stations have been carried out with the help of the main engine, keeping the vessel by the bow against the wind & wave.

The weather conditions during the first twenty days of the cruise, mainly, were not favourable for the work implementation. When strong wind being {more than 10 m/s}, because of heavy rolling & pitching implementation of the oceanographic stations by CTD probe of a great volume using stern P- frame was very difficult to be executed.


B.4. Meteorological  observations  (I. Filippov and R. Beardsley)


Meteorological measurements were made by FERHRI (Filippov) and by Woods Hole Oceanographic Institution (Beardsley).


A separate report of the WHOI measurements is found at the website:



B.4.1  Program  of  work (FERHRI)


            Program  of  the  cruise  36  has  been  planned  to  execute  a  number  of  hydrometeorological  observations  on  the  program  of  the  vessel  station  class  II  under  “Methodical  instructions  to  produce  meteorological  and  actinometry  observations  on  the  research  vessels“  part I,II.,1983,  as  well as  the  observations  on  the  anomalous  events  in  the  atmosphere  and  visual  monitoring  on  the  sea  surface  pollution  of  oil  and  oil  products.

            Meteorological  data  are  being  transferred  by  code  KN-01  for  4  main  intervals  in  the  address  of  Moscow-  Weather,  Vladivostok-Weather  and  foreign  centers,  storm  warnings  are  transmitted  by  open  text  in  the  address  of  Moscow-  Weather  and  Vladivostok-Weather.


B.4.2  Characteristic  of  the  work  to  be  executed


            Meteorological  observations  were  produced  in  the  cruise  from  July  16  till  August  13,  1999,  excluding  the  vessel  staying  at  Pusan,  at  the  main  synoptic  period  00,  06,  12  and  18  hours  GMT.

            Urgent  hydrometeorogical  observations  have  been  carried  out  in  total  -  86  and  sent  the  same  quantity  in  the  addresses  corresponding.  3  storm  warnings  have  been  sent,  as  well.

            All  information  has  been  controlled  and  recorded  in tables (THM-15).


B.4.3  Equipment,  devices,  characteristic  of  work,  position  and  change  in  the  cruise.


            When  meteorological  observations  producing,  standard  Russian  meteodevices  and  automatic  meteostation  “Midas  321”  (Finland)  developed  under  requirements  of  World  Meteorological  Organization  (WMO)  have  been  applied.

            The  atmospheric  pressure  was  measured  by  aneroid  barometer  M-67  fixed  in  meteorological  laboratory  at  the  altitude  5  meter  over  the  sea  level.

            Baric  tendency  feature  was  determined  by  week  barograph  M-22H  fixed  nearly  aneroid  barometer  .

            The  air  temperature  was measured  by  aspiration psychrometer MB-4M  fixed  on  the  turn  arms  at  the  distance  of  3  m  from  the  vessel  side  at  the  altitude  12  m  over  the  sea  level.

            The  wind  speed  and  direction  were  measured  by  sensors  of  automatic  station  “MIDAS-321”  fixed  on  the  fork  mast  at  the  altitude  of  18  m  over  the  sea  level.

            The  sea  surface  layer  was  measured  by  mercury  thermometer TM-10  being  put  in  standard  safeguard  covering  in  the  vessel  bow  part  on  the  windy  leeward  side.

            The  atmospheric  precipitation  quantity  was  determined  by  automatic  weather  station  “MIDAS-321”.

            Observations  on  clouds,  visibility,  atmospheric  events,  wave  direction  and  period  were  produced  by  visual  from  the  upper  bridge.  The   wave  altitude  was  determined  from  the  stern  duck.

            Hydrometeorological  information  was  processed  by  IBM  PC/AT  using  program  METEO-SW.


B.4.4 Evidence  on  control  and  devices  calibration


Table  4.1  gives  dates  of  control  on  the   meteorological  devices  used  in  the cruise

                                                                                                                        Table  4.1


Name  of  device


Factory  number

Date  of  control


Week  barograph

Psychrometer  aspiration


Anemometer  (manual)

Mercury  thermometer













January  1999

January  1999

January  1999

February  1999

January  1999

January  1999


            The  automatic  meteorological  station  “MIDAS-321”  readings  were  regularly  controlled  by  standard  meteorological  devices  in  the  cruise


B.4.5 Methods  of  observations  and  processing


Meteorological  observations  and  obtained  data  processing  have  been  conducted  under  the  Russian  methodical  instructions  as  to  WMO standards.


B.4.6 Data  on  hazard  and  especially  hazard  hydrometeorological  events


In  the  cruise  the  hazard  events  were  observed  as  follows


23.05.1999         in  the  position  40 0 12 N,  134 0 37 E  -  fog,  visibility  -  400  m,

26.05.1999         in  the  position  41 0 15 N,  134 0 06 E  -  fog,  visibility  -  400  m,

27.05.1999         in  the  position  41 0 16 N,  134 0 31 E  -  fog,  visibility  -  400  m.



B.5. Report of oceanographic group  (CTD, salinity, oxygen)


B.5.1. CTD, rosette, salinity, oxygen data on Legs 1 and 2 (V. Luchin)


B.5.1.1 Program of work


In the cruise the oceanographic observations have been carried out under the approved program taking into account a few amendments of CTD stations position & the order proceeding along the route. Figure 1 & accompanying table show the scheme of route & station positions.

The oceanographic work consisted of:

-       sea water temperature & salinity measurements by CTD probe “SBE 911 plus CTD” from the sea surface to the bottom making sea water samples at the given levels {not always standard} by twenty four 10 l bottles for the hydrochemical analyses;

-       sea water salinity determination in the laboratories by salinometer “Autosal 8400”;

-       current measurements at oceanographic stations {while up & down the probe} by special acoustic equipment {LADCP}.



B.5.1.2. Characteristic of the work carried out {CTD measurements, water sampling& current measurements at the stations}.


In order to make measurements of the temperature, salinity and seawater pressure at the stations from the sea surface throughout the bottom CTD probe NBIS of model MK III as well as rosette to the probe “SBE 911 plus CTD” were used. The water samplers for hydrochemical analyses were fulfilled at the chosen levels by twenty four 10 l bottles. In the laboratory the sea water salinity was determined by salinometer “Autosal 8400”.

The current measurements at the stations {while up &down the probe } were fulfilled by LADCP.

CTD data, salinity & current measurements were produced by using software developed in Scripps Oceanographic Institute of UCSD. The data processing were performed by IBM PC. All data were recorded on the carriers as well as CDROMs & Zip disks. The CTD data were recorded on VCR cassettes.

In the cruise there were fulfilled 90 oceanographic stations in total with temperature, pressure measurements {depth of the devices submerging} & salinity {conductivity} by CTD probe from the surface throughout the bottom. At all oceanographic stations {irrespectively from the depth of position } the last level of observations was at the distance of 4-10 m from the bottom.


B.5.1.3  Hydrochemical observations


B. Devices


Salinity was determined both by CTD detector {continuous profile throughout the depth } & by salinometer at each station {control determination}.

In the cruise two salinometers “Autosal 8400 A” company “Guildline Instruments LTD” {Canada} 53-503 &48-263 were used. Instrumental accuracy of this type salinometers is not worse than -+ 0.001 0/00 while making a set of sample standardizing at each station & not worse than +- 0.003 0/00 for 24 hours of work not including restandardizing.

High accuracy & persistence in data obtaining by the salinometer was achieved by the presence of two pain of platinum-radium electrodes in the measurements chamber & built-in high frequency thermostat {volume of water tank – 18 l} having the range of given temperature 18-330C with the interval in 30C, accuracy 0.020C. Moreover, double meanings of relative conductivity of standard & samplers are used that increases the resolution device ability.

Salinometer 53-503 is connected with PC through builtin interface RS232. The data putting from salinometer display №48-263 to the computer is produced by hand.


B. Methods of determination & salinity data processing


The control salinity samplers were chosen at each stations at all levels of the bottles working {maximal number – 24}.

Levels of sample taken were defined by an operator of CTD probe, taking into account the element profile depth change, determined by the probe detector {temperature, salinity, dissolved oxygen & fluorimeter.

Samples were thermostatted in the laboratory not less than 8 hours before determination beginning. The experiment demonstrated that having instable temperature in the laboratory such thermostating is not sufficient, the speed of sample going through salinometer should be decreased, as a result, the time spent for the sample analysis abruptly increases, & the data stability decreases. Therefore, on the r/v “Pr. Khromov” the sample water thermostatting was additionally applied, directly before the temper. determination approximately by 1°C lower the temperature marked in salinometer thermostatt.

Before & on completing of each set of samples, the salinometer was calibrated as to the normal water of IAPSO standard, series P134 {USA}. It was produced a few readings of each sample, assuming differences in readings are as follows: 000003 for normal water & 0.00005 for the sample of double conductivity. The sample salinity estimations were obtained not accounting the device heated itself.

The intermediate data were processed under the program – salinity was obtained in consideration of self-heating, as well as the estimation difference between the salinity estimations by a salinometer & CTD detector that could be used on further calculation after a critical control.

In the cruise at 90 stations there were analysed in total 1719 samples.


B.5.2 CTD, rosette, salinity, oxygen data on Leg 1 (C. Mattson, SIO/ODF)

            This is a continuation of cruise HNRO7. Refer to the HNRO7 Prelim Cruise Report for preexisting conditions.


B.5.2.1 CTD data and rosette

            CTD data were recorded on IBM PC's. Digital backups were made on CDROMS and Zip disks. Analog backups were made on VCR cassettes.


CTD instrument numbers: 

            NBIS Model MKIII    ODF CTD#3 sta 116,117

            NBIS Model MKIII    ODF CTD#5 sta 114,115,118-122


Large rosette:

The large rosette was used for Stations 114-115, 118-122 and consisted of:

    NBIS MKIIIB CTD s/n 01-1070 (ODF ctd#5)

    Sensormedics Oxygen Sensor  s/n 6-02-08

    STS 24 bottle rosette frame

    24pl Seabird pylon model SBE32 s/n 3212613-0164

    SIO made bullister style 10 liter bottles

    Benthos Pinger model 2216 s/n 1275

    Simrad Altimeter model 807 s/n 0711090

    STS Battery Pack for Altimeter

    RDI LADCP CS-150KHZ s/n 1546

    LADCP Battery Pack

    Wetlabs Cstar 25cm transmissometer c/n CST-244DB

    Wetlabs Cstar 25cm transmissometer c/n CST-245DB

    CTD #5 has dual sensors mounted on twin turrets -  two identical Temperature channels and two identical conductivity channels.

    CTD sensors soaked in distilled water between all casts.

    Swapped sensor pair in config file for onboard CTD and Bottle data reports.

    Cond#1 sensor has a pressure effect on deep case and will require a pressure fit correction.


    10L Bullister style SIO manufactured.

    Bottles serial numbered 1-24 corresponded to the pylon tripping

    sequence 1-24 with the first bottle tripped being bottle #1.


    Oxygen data interfaced with the CTD and incorporated into the CTD data stream.

    Sensormedics Oxygen Sensor  s/n 6-02-08


    Wetlabs Cstar 25cm (Blue)  Transmissometer c/n CST-244DB

    Wetlabs Cstar 25cm (RED)   Transmissometer c/n CST-245DB


    RDI LADCP CS-150KHZ s/n 1546


Small Rosette.  The small rosette was used on sta 116, 117 and consisted of:

    NBIS MKIIIB CTD s/n 01-1095 (ODF ctd#3)

    Sensormedics Oxygen Sensor  s/n 90222-01 sta 116

    Sensormedics Oxygen Sensor  s/n 6-02-07 sta 117

    FSI OTM s/n 1322

    STS small 24 bottle rosette frame

    36pl Seabird pylon model SBE32 s/n 3216715-0187

    Seabird Temperature Sensor SBE35 s/n 3516590-0011

    24 SIO made bullister style 2.7 liter bottles

    Benthos Altimeter model 2110 s/n 156


    New Conductivity sensor s/n P51 was installed at beginning of trip.

    Conductivity sensor cleaned prior to sta 117

    PRT#1 has what appears to be a long response time of about 1 second or more.

    CTD sensors soaked in distilled water betweem all casts.


    2.7L Bullister style SIO manufactured.

    Bottles serial numbered 1-24 were tripped in sequence.

    The pylon was a SBE32 36 place model so certain pylon positions were skipped. This was done automatically by the acquisition program and tripped in the following order:

    01 02 04 05 06 08 10 11 13 14

    16 17 19 20 22 23 25 26 28 29

    31 32 34 35


    Oxygen data interfaced with the CTD and incorporated into  the CTD data stream.

    Sensormedics Oxygen Sensor  s/n 90222-01 sta 116

    Sensormedics Oxygen Sensor  s/n 6-02-07 sta 117


    No DSRT's


    No Transmissometer


    No LADCP


Winches:  The CTD winch had a 9mm single conductor EM cable with approx 4700M of wire.


B.5.2.2 Salinity

Salinometer types                    Serial numbers

     Guidline 8400A Autosal      55-503

     Guidline 8400A Autosal      48-263

Standard seawater:  Batch  P-134 


Autosals were configured for computer-aided measurement. The data was acquired on a PC. #48-263 had an intermittent display problem that was repaired after box #116. The serial interface then stopped working. The Autosal operation was then switched to #55-503.


    #48-263 stations 114-117    27 deg bath temp

    #55-503 stations 118-122    27 deg bath temp


B.5.2.3 Oxygen

Oxygens were run all stations using a Dosimat UV-endpoint detection automatic titration system. There were no major problems.  The titrator employed a Brinkman Dosimat 665 automatic burette and an Ultraviolet detection system interfaced with a PC for data acquisition and control.


B.5.3 CTD final calibration comments (M. Johnson, SIO/ODF)

General comments: As of 2 November 2004, these KH36 CTD data (90 stations) are final.  Calibrations have been carefully checked, using overlays of deep theta-salinity profiles plus surface salinity and sigma theta plots vs. pressure.  The missing data from some of the steeper thermoclines of the first 9 casts have been interpolated; all interpolated/extrapolated data are quality-coded 6. The software problem that omitted this data was fixed prior to the start of the cruise.  Oxygen corrections from the preliminary data sent in 1999 have been applied here as a courtesy; all CTD oxygen data are coded 1 (uncalibrated).

            The CTD-5 secondary T/C sensors were used as the "better" pair; both sensor pairs had significant noise on their upcasts.  The numerous offsets and higher noise level on the T1/C1 downcasts outweighed the down/up "split" seen on the T2/C2 pair: upcasts were offset from 0 to -0.004 PSU vs downcasts below the thermocline on this cruise.  The calibrated downcast CTD salinity data were fairly consistent.  The bottle salinity data had numerous standardization issues.  An attempt was made to weed out the standardization problems, which seemed to be worse during the first 20 casts of the cruise.  The remaining salinity data were used to determine final calibrations for the CTD data.

            CTD-3, with yet another new conductivity sensor, was used for stations 116 and 117; otherwise, CTD-5 (with dual T/C sensors) was used.  The new CTD-3 C sensor had a + drift with time, both down and up casts, but less than the previous new sensor used for only station 113 on HNRO7.  An extra S(P**1) correction was applied to the downcast salinity, based on comparison of "final" corrected salinity to the upcast bottle data.  Stations 116 and 117 had different corrections applied, because the sensor was "cleaned" between the casts in an attempt to stop the drift.  The deep data are consistent with nearby casts.


Detailed calibration comments:


KH36 CTD Configurations:


   NBIS MKIIIB CTD: s/n 01-1095 (ODF CTD#3) sta 116,117

      Pressure s/n 77011

      T1 s/n 15778 (T1 apparently has a long response time of 1+ seconds)

      T2 FSI OTM s/n 1322

      C1 s/n P62 (new/installed at beginning of cruise; cleaned between 116/117)

      C2 N/A


   NBIS MKIIIB CTD: s/n 01-1070 (ODF CTD#5) sta 114,115,118-203

      Pressure s/n 77017

      Dual T/C Sensors mounted on twin turrets:

      T1 s/n 15407 (hnro7/sta.92: T1 jumps abt. +0.001 3300m down/back 3000m up)

      C1 s/n O16 (Prs. effect on deep casts, requires a C(P) corrxn).

      T2 s/n 17534

      C2 s/n O24


   Dual Wetlabs Cstar 25cm transmissometers - only on CTD-5 casts

      (Blue) c/n CST-244DB

      (RED)  c/n CST-245DB


   Sensormedics Oxygen Sensors:

      O2 s/n 90222-01 sta 116

      O2 s/n 6-02-07 sta 117

      O2 s/n 6-02-08 on stas 114,115,118-142 (did not work during 142)

      O2 s/n UNKNOWN on stas 143-203


   Seabird Temperature Sensor SBE35 s/n 3516590-0011



CTD Sensor Calibrations:



      Pressure Sensor s/n 77011 (Paine):

        P Calibs:

            May 1999 -  0.09/29.88 deg.C bath to 6080/1191 db

            Dec.1999 -  0.04/26.93/30.93 deg.C bath to 6080/1191/1191 db

        cold cals: shifted -1.25 db from pre- to post-cruise calibration

        warm cals: shifted -1.3+ db from pre- to post-cruise calibration

        Correction used:  pre-cruise P calib with 0.65 offset

            (in effect, averaging the two calibs)


      Temperature Sensor s/n 15778 (Rosemount PRT):

        T Calibs: May 1999/June 1999/Dec.1999

          (June 1999 was only a 2-point cal to re-check Tcal)

          large/~0.18 deg.C slope from 0-30 deg.C

          cold end fairly similar pre- to post-cruise

          warm drops ~0.015 deg.C change?  (Hard to tell with steep slope)

        Correction used:  equally weighted May + Dec. 1999 Tcals

          (same #pts at each level, same # of levels) - then averaged


      Conductivity Sensor s/n P62 (GO):  stations 116+117

        Calibrated to bottle salts taken during cruise.

        This sensor had a noticeable + Conductivity drift with time

            during station 116, but drifted significantly less than

            the sensor used on HNRO7 station 113.  The sensor was

            "cleaned" before station 117, resulting in a much smaller

            station 117 drift.  Down and up casts needed separate

            corrections, and each station needed a different

            correction due to the sensor cleaning.

        1. A second-order dC(C**2) slope based on bottle-CTD (up cast)

            differences from both casts was determined. The same

            slope was applied to both stations, to down and up casts.

        2. Residual bottle-CTD (down cast) Salinity differences were

            visually grabbed from a theta-salinity plot.  A first-

            order pressure-dependent fit (dS(P)) was generated and

            applied separately for down and up casts (sta 116) and

            for the down cast only (sta 117).  These fits were applied

            IN ADDITION TO the dC(C) slope determined in step 1.

        3. Station 116 deep bottles seemed to have standardization

            issues and could not be trusted.  The dS(P) fits for

            sta 116 (described in step 2) were redetermined/reapplied

            using sta 117 bottle data.

        4. Deep Theta-Salinity overlays of stations 114-122 were checked

            for consistency.  Station 116 was at the southeast corner

            of the "box" of stations, and station 117 was the center

            of 3 casts along the eastern border of the "box".



      Pressure Sensor s/n 77017 (Paine):

        P Calibs:

            May 1999 -  0.075/29.695 deg.C bath to 6080/1191 db

            Oct.1999 -  0.1/28.85 deg.C bath to 6080/1191 db

        cold cal: shifted -0.35/-0.5/-0.6 db top 1000db/mid-range/4000db

            from pre- to post-cruise calibration

        warm cal: shifted +0.3 top 1000db/mid-range and no change at bottom

        Correction used:  average pre-/post-cruise cold and warm P calibs


      (T2) Temperature Sensor s/n 17534 (Rosemount PRT):

        T Calibs: May 1999/Oct.1999

          +0.0007 deg.C at 0 deg.C, +0.0002 deg.C at 11 and 30 deg.C

            from pre- to post-cruise calibration

        Correction used:  equally weighted May + Dec. 1999 Tcals

          (same #pts at each level, same # of levels) - then averaged


      (C2) Conductivity Sensor s/n O24 (GO):

        Calibrated to bottle salts taken during cruises (HNRO7+KH36 used

        same sensors for this CTD, Cond. corrections determined in tandem)

        1. For each cruise, generated first-order dC(C) fits with a (4,2)

   rejection using Bottle-CTD Cond. differences outside

            the high gradient areas (used pressures < 25 db or > 200 db).

            This omitted most of the high-gradient bottle-CTD scatter.

            Also, numerous KH36 casts were omitted from these fits because

            their down-up CTD differences were more than +/-0.0015 mS/cm.

        2. An average of the coefficients for HNRO7 and KH36 (from the              dC(C) fits done in step 1) was applied to both data sets, then

            residual offsets were plotted and checked.

        3. Offsets seemed to slowly but steadily increase within each leg.

            For each cruise, generated and applied a first-order fit of

            the residual Conductivity offsets, using only differences

            below 400db with a (4,2) rejection.  Additionally,

            a few large bottle-CTD differences were manually omitted

            from these fits. 

        4. Offsets were then manually adjusted from the smoothed values

            based on deep theta-salinity consistency.  Numerous Autosal

            runs were disregarded because of standardization issues caused

            by instrument problems and operator inexperience (frequent

            standard dial changes and drifts on many stations, espec. the

            first 20 stations of KH36).  If the CTD data were consistent

            before adjustment, they were generally not shifted apart merely

            to match bottle data.  Some data were shifted due to down vs.

            up cast differences (down cast CTD data are reported, but

            bottles are compared to up cast CTD data at the time of the

            bottle trips.)

        5. A residual pressure-dependent slope was quite apparent at this

            point.  A first-order dC(P) fit was determined for each cruise,

            based only on differences deeper than 250 db and using a (4,2)

   rejection.  (Thermocline and surface bottles, often

            also in high gradients, distorted the fits, so only deeper

            pressures were used.)

        6. The HNRO7 and KH36 dC(P) coefficients from step 5 were averaged

            together, and then applied to CTD-5 data from both cruises.

            The dC(P) and dC(C) coefficients were both used, with the

            two Conductivity offsets added together.

        7. Deep Theta-Salinity overlays of 8 consecutive casts, as well

            as non-consecutive stations in close proximity to each

            other based on position and/or depth, were checked for



B.6. Report on  LADCP  observation (N. Rykov and A. Shcherbina)


B.6.1.  Objectives


            The aim of observatons is to obtain a set of the current vertical profiles from the sea surface throughout the boltom for furher estimation of the dynamic processes in the economic zone Russian Federation of the Japan Sea.



Š      to make instrumental current measurements by LADCP as to the instructions received;

Š      to fulfill a preliminary data processing by methods and sofware of University of Hawaii (USA);

Š      to obtain the electronic copies of the observed data, current vertical profile components and another characteristics, current vectors at the given levels.


B.6.2.  Characteristic of measurement equipment, methods of observations and processing


            In order to make measurements of the current velocity and a number of associated characteristics, LADCP has been used (Lowered Acoustic Doppler Current Profiler).Manual « DR/SC-BBADCP TECHNICAL MANUAL-AUGUST 1995 (CHANGE1)» has in it content the technical device specification, description of control orders and parameters, list of output data format, the basic calculation formulae mentioned in it.

            The principle of various modification  LADCP operation is in a difference of frequencies for sending  and reflecting sound signal within the source and moving water mass.  Measured relative current velocity is determined by the term:


                                                V = Fd ŠCŠ1000 / 2Fs,

where  C is a sound velocity in the sea water;

           Fd - shear of Doppler’s frequency;

           Fs - transmited source frequency. For the device used Fs = 153.6 kHz.

            So that to obtain the horizontal  and  vertical vector components of the current there are used four sources sending signals at different angle regarding each other.

            The technical characteristics of the meter take into consideration a possibility of 128 water layers echo ranging simultanuasly, each layer having thickness from 0.05 to 32 m.  Given accuracy of the current speed measurement is usually 1 sm/s. Actual accuracy depends on an accuracy of the sound velocity determination  and  the time positions. In accordance with this the final data processing requires  CTD-data of very high quality as well as the sound signal source position determination of high discretness  and  accuracy in time  and geographical positions.

            To countrol  LADCP  operation the system of commands  and given parameters are used  (see below).


 Specifications commands  and LADCP operation parameters.


Broadband ADCP Version 5.52

RD Instruments (c) 1991-96

All rights reserved.



RA = 000 ----------------- Number of Deployments Recorded



[Parameters set to FACTORY defaults]


    Frequency:  153600 HZ

Configuration:  4 BEAM, JANUS

  Match Layer:  10

   Beam Angle:  30 DEGREES

 Beam Pattern:  CONVEX

  Orientation:  DOWN

 Xducer Ser #:  02612


 XDC Firmware:   1.16

 CPU Firmware:   5.52

 DEMOD #1 Ver:  ad46, Type:   3

 DEMOD #2 Ver:  ad46, Type:   3

 PWRTIMG  Ver:  c5d3, Type:   4

 REC Firmware:   4.05
















>TP 00:00:00

>TE 00:00:01.00

>TB 00:00:02.60

>TC 2



[Parameters saved as USER defaults]


BA = 030 ----------------- Evaluation Amplitude Min (1-255)

BB = 0000 ---------------- Blanking (cm) (0-9999)

BC = 220 ----------------- Correlation Magnitude Min (0-255)

BD = 000 ----------------- Delay Re-Acquire (# Ensembles)

BE = 1000 ---------------- Max Error Velocity (mm/s)

BF = 00000 --------------- Depth Guess (0=Auto, 1-65535 = dm)

BG = 80,30,00030 --------- N/A Shal Xmt (%), Deep Xmt (%), Deep (dm)

BH = 190,010,004,040 ----- N/A Thresh(cnt), S Amb(cm/s), L Amb(cm/s), MinAmb

BK = 0 ------------------- Layer Mode (0-Off, 1-On, 2-Lost, 3-No BT)

BL = 320,0640,0960 ------- Layer:  Min Size (dm), Near (dm), Far (dm)

BM = 5 ------------------- Mode (4 = Default - Coherent, 5 = Default)

BP = 000 ----------------- Pings per Ensemble

BR = 0 ------------------- Range Resolution (0 = 4%, 1 = 2%, 2 = 1%)

BS ----------------------- Clear Distance Traveled

BX = 5000 ---------------- Maximum Depth (80-9999 dm)

BZ = 005 ----------------- Coherent Ambiguity Velocity (cm/s radial)


CB = 411 ----------------- Serial Port Control (Baud; Par; Stop)

CF = 11101 --------------- Flow Ctrl (EnsCyc;PngCyc;Binry;Ser;Rec)

CG = 0 ------------------- Ping Mode (0=Std, 1=Timed Data Out)

CK ----------------------- Keep Parameters as USER Defaults

CL = 0 ------------------- Battery Saver Mode (0=OFF, 1=ON)

CP = 255 ----------------- Xmt Power (0=min, 255=max)

CQ = 008 ----------------- Xmt Delay Select (0-127)

CR # --------------------- Retrieve Parameters (0 = USER, 1 = FACTORY)

CS ----------------------- Go (Start Pinging)

CT = 00 ------------------ Turnkey Mode (0=OFF,1=TURNKEY)

CX = 0 ------------------- Triggered Xmt (0=OFF,1=LH,2=HL,3=LH/HL,4=L,5=H)

CY = 00000000 ------------ Clear BIT Log

CZ ----------------------- Power Down BBADCP


EA = +00000 -------------- Heading Alignment (1/100 deg)

EB = +00000 -------------- Heading Bias (1/100 deg)

EC = 1500 ---------------- Speed Of Sound (m/s)

ED = 00000 --------------- Transducer Depth (0 - 65535 dm)

EH = 00000 --------------- Heading (1/100 deg)

EP = +0000 --------------- Tilt 1 Sensor (1/100 deg)

ER = +0000 --------------- Tilt 2 Sensor (1/100 deg)

ES = 35 ------------------ Salinity (0-40 pp thousand)

ET = +2500 --------------- Temperature (1/100 deg Celsius)

EX = 11101 --------------- Coord Transform (Xform:Type; Tilts; 3Bm; Map)

EZ = 0011101 ------------- Sensor Source (C;D;H;P;R;S;T)


PA ----------------------- Pre-Deployment Tests

PC ### ------------------- Built In Tests, PC 0 = Help

PD = 00 ------------------ Data Stream Select (0-7)

PI = 011111 -------------- Built in Tests (Rpt;CPU;Clk;TC;DSP;Loop)

PM ----------------------- Distance Measure Facility

PS # --------------------- Show Sys Parms (0=Xdcr,1=FLdr,2=VLdr,3=Mat,4=Seq)

PT ### ------------------- Built In Tests, PT 0 = Help


TB = 00:00:02.60 --------- Time per Burst (hrs:min:sec.sec/100)

TC = 00002 --------------- Ensembles Per Burst (0-65535)

TE = 00:00:01.00 --------- Time per Ensemble (hrs:min:sec.sec/100)

TF = **/**/**,**:**:** --- Time of First Ping (yr/mon/day,hour:min:sec)

TP = 00:00.00 ------------ Time per Ping (min:sec.sec/100)

TS = 99/07/07,19:59:03 --- Time Set (yr/mon/day,hour:min:sec)


WA = 255 ----------------- False Target Threshold (Max) (0-255 counts)

WB = 1 ------------------- Mode 1 Bandwidth Control (0=Wid,1=Med,2=Nar)

WC = 056 ----------------- Low Correlation Threshold (0-255)

WD = 111 100 000 --------- Data Out (V;C;A  PG;St;Vsum  Vsum^2;#G;P0)

WE = 0150 ---------------- Error Velocity Threshold (0-5000 mm/s)

WF = 1600 ---------------- Blank After Transmit (cm)

WG = 000 ----------------- Percent Good Minimum (0-100%)

WH = 111 100 000 --------- Bm 5 Data Out (V;C;A  PG;St;Vsum  Vsum^2;#G;P0)

WI = 0 ------------------- Clip Data Past Bottom (0=OFF,1=ON)

WJ = 1 ------------------- Rcvr Gain Select (0=Low,1=High)

WL = 000,005 ------------- Water Reference Layer:  Begin Cell (0=OFF), End Cell

WM = 1 ------------------- Profiling Mode (1-8)

WN = 016 ----------------- Number of depth cells (1-128)

WP = 00001 --------------- Pings per Ensemble (0-16384)

WQ = 0 ------------------- Sample Ambient Sound (0=OFF,1=ON)

WS = 1600 ---------------- Depth Cell Size (cm)

WT = 0000 ---------------- Transmit Length (cm) [0 = Bin Length]

WV = 300 ----------------- Mode 1 Ambiguity Velocity (cm/s radial)

WW = 004 ----------------- Mode 1 Pings before Mode 4 Re-acquire

WX = 999 ----------------- Mode 4 Ambiguity Velocity (cm/s radial)

WZ = 010 ----------------- Modes 5 and 8 Ambiguity Velocity (cm/s radial)


RA = 000 ----------------- Number of Deployments Recorded

RB ### ------------------- Blank Check 1 MB of Recorder Memory (0 = ALL)

RD = 000 ----------------- Current Deployment Selected (0 = NONE)

RE ErAsE ----------------- Erase Recorder

RJ +##### ---------------- Number of Ensembles to Jump (+/- 99999)

RP = 0000 ---------------- Recorder Parameters (-;-;-;No Buffer)

RS = 000,020 ------------- Rec Space Used (MB), Free (MB), (999 = Erasing)

RT ----------------------- Recorder BIT

RY ### ------------------- Start YModem (Batch) Xfer Deployment # (0=All)



            Parameters  and  commands can be used both for initial meter loading and by an operator of  LADCP. At the last case recorrection of commands  and  parameters may require the software amendments.

            The main given parameters:

            - maximal velocity;

            - a number of ensembles of records;

            -a number of signal in ensembles;

            - time for ensemble;

            - a number of signal averaged by ensemble;

            - sound velocity;

            - type of coordinates;

            - size of memory required;

            - time of the first signal sending;

            - time interval between signals;

            - size of scanning layers;

            - a number of scanning layers;

            - accuracy of velocity measurement (root-mean-square deviation).


            The main output data:

            - reference sign indication part;

            - current velocity (each layer for each source);

            - correlation value (each layer for each source);

            - echo signal intersity (each layer for each source);

            - interest content of high quality data (aech layer for each source);

            - characteristics of the near bottom layer.


            LADCP has been built in CTD basket. Accumulator block also fixed in CTD basket  and  gives feeding to the meter. Boost charge of the battery is produced from the vessel source of 58 V on the vessel moving. The measured data record is performed on the autonomic information storage being located on the device case. The obtained information is rewritten on the vessel computer of Notebook type. The computer is controled by LADCP operator. The connected cable is used both for the commands information transmision and as the feeding line. For the data processing PC of Pentium class is used.

            Under the instruction an operator fulfills the actions ensuring  LADCP operation in the regime of recording, making copies of the observed data from  LADCP storage on a hard disk PC, fills in the report of observations.

            The software for  LADCP data processing has been developed in Unviersity of Hawaii (USA). It has been prepared to use in UNIX media with a wide applying of the languages  C and Perl  and  MatLab packet. The output data presented to be processed are in a binary form. To produce the calculations by self programm products there is a convertor to transfer them in ASCII format.

            Under the vessel conditions the preliminary data processing has been done. It main task is to give an assessment of the data obtained and their suitability for future comprehensive processing. In the preliminary the sound velocity was assumed to be constant, and the vessel drift in the observation time was to be linear and uniform. In no way the current meter location regarding the vessel position meter was considered. Having the great cable angle declination under the heavy vessel drift, it could be made errors in the current calculations, especially essential at the shallow water station, where  CTD and  LADCP measurements require reletavely not much time. At the shallow water stations, in addition, the essential errors in the current calculations can appear because of the low vessel accuracy of GPS. The final data processing will have been produced, using  CTD and navigational data during the year at University of Hawaii.


B.6.3. Actual program implementation; characteristic of the obtained results


            The current measurements were fulfilled at each  CTD probing. There were no any damage in the equipment operation. The program has been carried out completely. As a result the follouing data were obtained:

            - data of observation;

            - reports of  LADCP probing;

            - GPS files (seft of satellite navigational vessel positions determination with a discretness 3 sec);

            - plots of vertical profiles of the current components in the electronic form;

            - mapped current vectors at the levels of 60, 100 and 500 m in electronic and hard copies.

 Because of the meter constructive peculiarities and due to priviously given parameters there were not obtained the current records at the stations of the depth less than 150 m (NN 123, 124, 128, 130, 138-141, 202, 203). In probing at ststions 131 and 132 GPS was not working, so the measuremant positions of starting and completion are unknown, as s result, the currents at the stations were not determined. Because of the weather conditions the data from the stations 115-116 have very poor quality.

            The vertical current structure of the Japan Sea region studied looks very complex and ambiguous (Fig.6.1-6.4). As a rule, the maximal velocities were being observed in the surface and subsurface layers preserving their direction with in the limits of one square. Further  with the depth in the  sea different positions by individual examples there were observed the relatively homogeneous one layer current struture, but zonal and meridional components oftener changed their sing many times. The minimal velocities closing to zero ones were observed in the intermediate, deep sea or near bottom layers. In some cases the current intensification near bottom were observed (for example, sta. 159, 163, 165, 170, 183 and so on). It is very important that the stations mentioned above were placed in the deep sea basin. The last feature, if it finds the confirmation on the final data processing,  will require a special analysis and explanation.

            In the horizontal current structure there can be determined a number of the circulation elements (Fig.6.5-6.7).

1. The westbern stream of the Tsushima current propagates north-eastward to the region of 40-40.5° N,  134° E, where happens the strengthen of it eastern component. At the depth of 60-100 m the current velocity in the stream is to be 20-30 sm/sec. On the southern side of the subpolar front there was observed the current intensification. At the depth  of 500 m the refurn/restore current of south-easternward with the velocities of 5-10 sm/sec is dominant.

2. In the northen part of the region studied in the upper layer there is observed the Japan Sea water transport in the direction of the Laperous Strait.

3. Along the coast from 141° to 134° E the current  directed south-westward the Primorye Current is marked. It is weak nearly the shores (3-5 sm/sec) and becomes more strong on the off shore side, where the streams of 15-20 sm/sec branch out from it south-eastern direction.

4. In the current field two anticyclonic eddies (A1 and A2) with the water rotation clockwise are vividly revealed. A1 eddy center is located nearly the position 41°15 N and 134° E. Near the central position the currents are weak and instable, however, they gain in strength up to 20-25 sm/sec at the distance of 10 miles from the center and preserve their essential ability (8-10 sm/sec) throughout the bottom (Fig. 6.8, 6.9). Moreover, their intensification to 15-20 sm/sec is observed near bottom. All water thickness being inrolved in the circulation by the eddy from the sea surface throughout  the bottom a new and important factor in  dynamics of the long living eddies subject to confirmation of the event by the final result processing. On the eddy periphery the current velocity abruptly reduces the dynamic structure of A2-eddy (center about 40°30 N, 131° E) is more complicated if compared to A1 (Fig.6.10, 6.11). It is assymetric regarding the central axis. Nearly the center the velocity meridional components at  the intermidiate depths decreases to zero or changes it sign to opposite one. In the upper layer the velocities excess 30-40 sm/sec and at the  depths from 1500 m throughout the bottom are 10-15 sm/sec, i.e. as in the previous case the eddy rotary motions cover all the water thickness.


B.6.4. Conclusion and summary


            For the first time the widescale survey of the Japan Sea, covering the basic current systems with instrumental current measurement of high discretness from the sea surface throughout the bottom on the R/V «R/Revelle» and  «Prof. Khromov» has been conducted. The data obtained for the Japan Sea are unique. The preliminary processing results and  obtained data analysis give an evidence that they can be used for the investigations of various dynamic processes and events.


            The main conclusions can be done as follows:

            - meter of  LADCP type is an effective mean for the water circulation and dynamics studies. To improve its efficienty the up to data navigational vessel systems should be fixed  installed so that to ensure the conditions of probing with the minimal deviation from the vertical;

            - program-technology scheme of the data processing is acceptable for an operator having experience do of PC operation, though is not quite suitable for a user of Russian Federation. It is produced to work in UNIX media, applying languages Perl and MatLab are little known in Russia. The output data are presented in a binary form that doesn’t allow to make their estimations by the user. The results of preliminary processing have been presented in a graph form but not in a table one that doesn’t allow to store them in the archive file, so that the data to be processed and analyses further. The operator can’t change the current measurement  parameters due to a danger not to read the data obtained and to process them. Due to the full software absence and instruction for user it is impossible to process data in final so that to oftain not only the graph picture but as well as the results in a table form;

            - measured and then processed the current vector estimations are likely to be actual both on the velocity and direction. They indicate to the current intensification along zones of frontal divisions, along coast of the Primorie Current 48° and 43°20 N, the water fall in the direction of the Laperouz Strait,  anticyclonic eddies at 134° and 131°30 E. Of the most important fearture regarding the eddies mentioned above is the participant in a circular movement not only the baroclinic layer but as well as all water thickness from the surface throughout the bottom.                                                                     



B.7. Report of hydrochemical group: P. Tishchenko


B.7.1 Objectives


The hydrochemical group’s main task is to obtain new data on the carbonate system parameter distribution (pH and total alkalinity), dissolved oxygen and nutrients (nitrite, nitrate, nonorganic phosphor and silicate ) in the North-West part of the Japan Sea. In addition, there were sampled the sea samples for dissolved calcium, inert gases (helium, neon, argon, xenon, radon)  freons and isotopes (tritium , C14 , O18). The analysis of the samples will be carried out in the coastal laboratories.

 Besides the methodical work on pH measurements in the sea water has been conducted.  pH measurements were produced by now general accepted spectrophotometric method (equipment has been provided by Seoul National University) and recently  worked out by POI the potentiometric method in a cell of  liquid  lack unit.

The new data have been obtained at up-to-date level so that to study the Japan water mass hydrochemical structure in the summer season.


B.7.2 Staff of the group and their duties.


1. Dr. P.Tishchenko, head of group - potentiometric pH measurement, sampling (to determine pH , alkalinity, result processing, data file formation (pH, alkalinity), report compiling.

2. R.Chichkin, researcher - potantiometric pH measurement, sampling (to determine pH , alkalinity), equipment preparation to measure pH.

3. J.Pavlova – chief researcher- spectrophotometric pH measurement, sampling (to determine pH), data file formation (pH).

4. Yu.Shulga, engineer - spectrophotometric pH  measurement, sampling (to determine pH).

5. T.Volkova, researcher – determination of alkalinity, equipment preparation for alkalinity measurement.

6. E.Il’ina, researcher – alkalinity determination.

7. Dr. A.Nedashkovsky,  leading researcher - biogenic element determination, obtained results processing , file data formation (biogenic elements).

8.    M.Shevtzova, engineer – biogenic element determination

9.    S. Sagalaev, researcher- dissolved oxygen determination, sampling for oxygen, data file formation (oxygen).

10. O.Shevtsova, researcher - dissolved oxygen determination, sampling for oxygen.

11. A.Kalyagin, leading researcher - sampling for helium, tritium, isotop O18.

12. O.Vereschagina, chief engineer - sampling for freons, ampule soldering.


B.7.3 Methods of hydrochemical parameters  determination.

B.7.3.1 pH – measurements

B.   pH-potentiometric determination


pH-potentiometric measurements were being conducted just after sampling at 25°Cby the method of direct potentiometry in the close running water cells of lack liquid unit


studied section

standard section

H+-СЭ                    (A)


by glass pH – electrode (Ross-TM  Orion Co.) and Na+ - glass electrode (ESL–051-G). As a low ohm electrode there was used chlorsilver electrode with double liquid  unit (outer unit of the type “Smoothing”, model 900200,  Orion Co.). EMF was recorded by digital pH meter (model EL-940,  Orion Co.) with a sensibility of 0.1 mv. Electrode pair has been standardized by SWS scale, using buffer TRIS as a standard (DelValls, Dickson, 1998) and pH was calculated by the formula:



where Ex ,Es – the cell EMF (A) in the studied standard solutions . Na molality (mNa)x was calculated by the data of salinity (S), using terms ( Clegg and Whitfield, 1991),

                                                                 The rates of (gNa)х,  activity were calculated by the equation (Tishchenko and Pavlova, 1999)

where I –ionic force determined by the equation (Clegg and Whitfield, 1991)

                                                                                             The rate of sodium activity and molality  in a standard buffer solution were (mNa)s = 0.44618, (gNa­)s = 0.6412, respectively.

We made estimation of the pH measurement error by this method and it is equal to Ī0.0044 units pH (Tishchenko at el., 1998). It total, pH was measured in 1200 samples.


B. Spectrophotometric pH determination


In the cruise the Seoul National University suggested the equipment and reagents required for spectrophotometric pH determination. For this method m – cresol purple- indicator was used, constant of which depends on salinity and absolute temperature (T) in accordance with the equation (Clayton and Byrn, 1993)

The sea light absorption was measured by an indicator with the wave length of 434, 578 and 738 by means of Spectrophotometer Ultraspec  2000. pH estimations were calculate by formula

 where A  - absorption at associated wave length, ratio of function coefficients for m-cresol purple indicators are to be ,,.

Dong-Jin Kang (SNU) stated that the method reproductively was equal to 0.006 units pH . pH were measured in 1150 samples by spectrophotometric method.


B.7.3.2 Alkalinity determination


Alkalinity has been analyzed  just on sampling by a direct titration in the open cell by Bruevich’ method (1944): 25 ml of sea water was titrated by 0.02 n of hydrochloric acid with the mixed indicators (methyl  red and methylene blue). In the titration process the water samples were blown through by the air free from carbon dioxide and ammonia. The point of equivalence (pH about 5.4-5.5) was determined by visual to transition of the  light green color into light rose one. The titr HCl was installed daily in accordance with a standard soda solution prepared by the weigh method taking into consideration the vacuum amendment as to Dickson’s CRM. Titration was produced by a burette of Brinkman/Dosimate –665. Reproduction of sample obtained at one level was Ī0.0027 mg-equ/l.


B.7.3.3 Determination of biogenic elements


Out of the biognic elements NO2 and NO3 nonorganic phosphor and silicon solved in the water were determined. The samples were analyses by standard spectrophotometric method. In the analysis there was used autoanalizator “Technicon”, provided by SIO. The method accuracy is 1%. At 85 station 1500 sea water samples were measured.


B.7.3.4 Oxygen determination


Dissolved oxygen determination was produced by the volume Vinkler’s method, modificated by  Carpenter (1965). The essence of modification is in the fact that the end point of titration was determined by photocolourimetry (350-365 nm) with further processing by a computer, i.e. the titration process happened without a man activity that allowed to increase the method accuracy and its reproduction. Usage of precession weighers  also promoted to increasing of the accuracy method. The authors  of the method state that the dissolved oxygen in the water is determined with the accuracy of   Ī0,005 ml/l.

The equipment used was from (Scripps Institute of Oceanography), and consisted of microburettes  Brikman/Dosimate-665, photocolourimeter  and PC286/20/40M. The injectors of 1 ml were used in the burettes for oxygen titration and by 10 ml for calibration of thiosulphate solution. The burette control for titration taking photocolourimeter records as well as burette and temperature detectors (temperature Na2S2O3 and KIO3) were carried out by computer through multichannel chart I/O (PCL-812) and the readable terminal. The software for work of SIO installation was written on Beisik (qb45). The oxygen bottles used of standard  SiO, also calibrated there. The reagents and standards provided by SIO were used for the work.


B.7.3.5 Calcium determination


Calcium will be analyses by a complexonometric titration EGTA (Tsunogai S., et al., 1968). The essence of the method is as follows: 10 g of the sea water is transferred into 100 ml conic flask there EGTA solution of 7.5 mm volume was added that made titration of 95% for initial calcium quantity. After mixing by magnetic mixed device in the flask was introduced 2 ml of 0.05% GHA [glyoxal-bis (2-hydroxy-anil)] and 2 ml of borate buffer solution. The obtained solution were mixed during 3 minutes and 4 ml n-butanole  was added that extragated in red calcium GHA complex in a thin organic layer. Further calcium titration is being produce by the intensive mixing to colour an organic layer  colour transition from red to colourless . The standard solution is being prepared from calcium oxide sample preliminary calcinated  at 950°C , soluted  in the hydrochloric acid. Correction factor considering strontium presence is equal to 0.9946 (Tsunogai S., et al., 1968). Applying of Brikman/Dosimat-665 burette with 0.001 ml scale division provided the analysis accuracy of  Ī0.1%.


B.7.3.6 Dissolved gases


The dissolved gases – freon, helium and the other noble gases (neon, argon, xenon, radon) serve as indicators of the water mass age. The samples to analyze freons were taken at 43 stations (601 samples) and will be transferred in Washington University (Seattle, USA). The samples on helium and other inert gases (37 stations, 325 samples) as well as on isotopes O18 (40 stations, 325 samples), tritium (34 stations, 278 samples) were taken for transferring them to be analyzed in Kyung-Ryul Kim’s laboratories (Seoul University) and Bill Jenkins (Institute of Oceanographic Sciences, Southampton, England).


B.7.4 Work carried out and form of the results to be presented


In the cruise pH and alkalinity were measured at 100 stations, oxygen and biogenic elements were determined at 102 stations. For  the surface level at 100 stations there were obtained the samples with the solved calcium content, in addition, the samples were taken at a few deep-sea stations.

The measurements were fulfilled in the cruise are as follows :


pH pot                                    1200

pH spec                                  1200

Alkalinity                               1200

Oxygen                                   1650

Nitrite                                     1650

Nitrate                                     1650

Nonorganic phosphor              1650

Nonorganic silicon                   1650

Calcium                                     300


pH estimations were measured within SWS scale and presented in total file KH36.sea . Determination results of oxygen, alkalinity, biogenic elements are also given in this file.


B.7.5 Preliminary scientific results


B.7.5.1 Comparison of potentiometric and spectrophotometric methods of pH measurements in the sea water


At the initial test cruise stage we used the methodical variant of spectrophotometric pH measurement suggested by SNU. It included the sea water passing transport through the running that was destined to determine the accurate volume of the sample introduced in the optical cell. In this case the sea water sample was being mixed with the indicator by means of the air bubble being in the cell. Fig. 7.1a shows the result difference between potentiometric and spectrophotometric measurements this difference is to be – 0.025 units pH. In a few case it reaches – 0.1 units pH. We suggest that this difference should be due to the carbon acid lost in the process of the sea water sample going from a bottle in to the spectrophotometric cell. To make spectrophotometric pH measurements is not required the accurate ration between the indicator and sample. In order to reduce the sample way passing, a pipette was removed. Actually the agreement of the methods were improved, but general picture staged similar (Fig. 7.1.b). We explain this by a degazation in the mixing process of the indicator and sea water by means of the air bubble. To avoid this effect all gas bubbles were removed from the spectrophotometric cell. As a mixer of the sample and indicator a piece of ftoropeast  was used. It was a case of maximal agreement between 2 methods (Fig. 7.1c). However as before the systematic difference (-0.15 units pH) is presence between 2 methods. Perhaps it is due to different standards used by two methods. (The potentiometric method was used TRIS buffer and spectrophotometric one was used the constants of indicator). However, we think that in the spectrophotomentric method we were not able to exclude the degazation process, therefore the results of the potentiometric method are considered to be move correct. So in further work only these results will be used by us.


Fig.7.1. Difference of potentiometric and spectrophotometric methods for pH measurement; a - running pipette is used for spectrophotometric method; b - pHspec were obtained not using the running pipette; c –indicator and sample were mixed without air bubbles.



B.7.5.2. Carbonate system and oxygen


Generally known, that the surface water, as s rule, is close by its saturation to the gases as oxygen and carbon dioxide. These gases distribution is close related between them through the organic matter, that is form and broken down in the sea. If assumed Redfild’ stoichiometry for the organic matter, them the relation between the important gases will be written by the below equation




In this case when the reaction goes from the right to the left (photosynthesis) the surface water can be under saturation by the carbonic and over saturation in relation to oxygen. However, this process may be only in the field of photical layer. This layer below, the process of the organic matter oxygenation only occur (reaction is from the left to right). As a result, the deep sea waters are always under saturated by oxygen and over saturated by the carbonic acid. Due to these reactions and gas exchange on the boundary – sea water/atmosphere, the sea water is essentially stratified with the depth regarding concentration of oxygen and carbonic dioxide. In this case, if the rapid dynamic processes (for example eddies) lead to the water mass vertical transport, then the oxygen and carbonic dioxide content may serve as the indicator of the processes mentioned.

pH was measured in the cruise. This value, above all, depends on the carbonic acid concentration. Total alkalinity was also analyzed by us. The estimation of two parameters of carbonic system will allow us to calculate the other ones, including the carbonic acid concentration. However, here we’ll only consider quality and character of distribution for the directly measured data.

Fig. 7.2. shows oxygen and pH distribution. The figure demonstrates that in pH and oxygen distribution is observed a slightly expressed minimum at the depths of 1500 – 2000 m. The position scattering on the profile vividly increases the analytical errors for the levels upper 1500 m. Distribution becomes more homogeneous at the deeper levels. In this case oxygen changes within the limits 210 – 212 mcmol/kg, leaving an average value 211 mcmol/kg. pH estimations are within the limits 7.41 – 7.44, an average value is equal to 7.425 that is lower to some extent for the average meanings (7.446) at the deep sea levels obtained in the winter period (Tishchenko and et al, 1998b).


Fig.7.2. Profiles of pH (a) and oxygen (b).


The figure shows the close character of pH and oxygen distribution that indicates to their internal relation. As already told pH is to an essential degree, determined by the carbonic acid concentration and the latter is related to oxygen through the reaction  above mentioned. Fig.7.3 shows directly correlation relation between pH and oxygen. In spite of the  evident dependence (nearly to linear one) of these parameters, there exist the ejection areas in the pH increasing . We consider these injection are chemical processes but not analytical measurement errors that should be carefully studies and  guessed. Fig. 7.4 gives the results of alkalinity measurements.


Fig. 7.3. Correlation field of pH-oxygen.


The surface levels are as a rule characterized by the lower estimations of alkalinity (Fig. 7.4a). This factor is due to an effect of dilution, i.e. by lower salinity. By normalization of alkalinity to 35o/oo salinity the effect of dilution is removal (Fig. 7.4b). Minimum of alkalinity normalized at the depth of 200 – 300 m seems to be explained by zooplankton consumption of carbonate calcium. The normalized alkalinity is little changed  with the depth. Its average value is 2.350 mg-equ/kg  lower 2000 m that is well associated to the value 2.355 mg-equ/kg prior obtained by us (Tishchenko at et., 1988b).

Fig.7.4. Profile of alkalinity distribution (a) and normalized alkalinity (b).


B.7.6 Biogenic element variability at the deep-sea stations


Fig. 7.5 gives the general character of vertical silicate and phosphate variability. The vertical nitrate variability is similar to phosphate one that is confirmed by  Fig. 7.6 where nitrate – phosphate correlation fields are shown.


Fig. 7.5. Correlation fields silicates-depth  (а) and phosphates-depth (b)


Fig. 7.6. Correlation field nitrates-phosphates (DN/DP = 13.1, r = 0.995)


     The obtained data show that at the deep sea stations the vertical biogenic element distribution can be characterized by the three layer structure :a) homogeneous deep sea layer (from 2000 m to the bottom), b) intermediate layer(100-500),c) surface layer.


B.7.7 References

Bruevich S.V. 1944. Alkalinity definition in small volume of sea water by direct titration. // Manual on chemical investigations. Edit. «Glavsevmorput’», 83 pp.

Tischenko P.Ya., Bychkov A.S., Pavlova G.Yu., Chichkin R.V. 1998a. Standardization of pH measurements on method Pitser basis. // Physical chemistry, Vol. 77, #6, p.1049-1058.

Tischenko P.Ya., Pavlova G.Yu., Salyuk A.N., Bychkov A.S. 1998b. Carbonic system and dissolved oxygen of the Japan Sea. // Oceanology, Vol. 38, #5, p.678-684.

Clegg S.L., M.Whitfield, in Activity coefficients in electrolyte solutions. 2nd Edition/ K.S.Pitzer Ed., CRC Press, Roca Raton, Ann Arbor, Boston, London, 1991. p.279-434.

DelValls T.A., Dickson A.G. 1998. The pH of buffers based on 2-amino-2hydroxymethyl-1,3-propanediol (‘tris’) in snthetic sea water// Deep-Sea Res.I, V.45, p.1541-1554.

Tsunogai S., Niskimura M., Nakaya S. 1968. Complexometric titration of calcium in the presence of larger amounts of magnesium// Talanta, V.15, p.385-390.

Tishchenko P.Ya., Pavlova G.Yu. 1999. Standardization pH Measurements of Seawater by Pitzer’s Method. In: CO2 in the Oceans, Tsukuba.


B.8. Report of bioptical group:  S. Zakharkov


B.8.1. Basic scientific positions


The main investigations have been carried out by Dr. S. Zakharkov (POI) with a help of Dr. G. Mitchell (Scripps Institute of Oceanography).

Spectors of the surface water reflection and direct sunlight were measured by a and radiometer SIMBAD. The above water measurements were supported by the water samples to determine chlorophile "a", HPLC-pigments, absorption particles and dissolved matters, particles of organic carbon and nonorganic material.

The samples were taken in euphotic zone defined by the depth of Secchi disk. The particle matter was divided into phytoplankton and detrit components using methanol extraction and differential spectroscopy. The summary particle absorption and water solution can be used to model the coefficients of spector rejection weaken in the euphotic zone.

The rejection light coefficients and CTD data will be used to determine the water mass structure and circulation. Meters of the red and blue spector rejection were built in CTD system of SIO. The water samples throughout the depth were taken at individual stations for the analyses mentioned  above to be done. The coefficients of rejection will be related to the vertical hydrological and hydrochemical structure parameters, including oxygen, biogenic elements, salinity and temperature.


B.8.2. Equipment, provisions and reagents used


    Under water trausparence meter (in red spector field).

    Under water transparence meter (in blue spector field).

    Spectrophotometer Cary 1E UV/Visible (190-900 nm).

    Universal small oceanic meter light reflector SIMBAD.

    PC ATC 386.

    PC HTI P-90 MHz.

    Colour monitor SVGA Shamrock 15.

    Dewar flask of 5 l liquid nitrogen Taylor Wraton.

    Dewar flask of 35 l liquid nitrogen Taylor Wraton.

    Vacuum filtration equipment including 2 vacuum pumps, filtration reservoir, orgglass installation for the sample filtration, filtering funnels, forceps and so on.

    So that the above described work to be carried out on board the "Pr. Khromov" were delivered 8 l of methanol (for pigment extraction), 100 ml of 25% glutaric dialdehyde, 4 l of ethanol (to wash glasses and optical windows), 1 l of concentrated hydrochlorid acid (to wash the flasks for samples). The liquid nitrogen (35 l) was received in Pusan. 


B.8.3.The group staff


     The group consisted of Dr. S.Zakharkov (POI)


B.8.4. Methods


B.8.4.1. Typical plan of station


     Above water reflection was measured by SIMBAD in the day light of CTD stations. The water samples from CTD-ROSET system were  taken from the surface and at the chosen depths, day stations to provide SeaWiFS and SIMBAD with the data. The analysis of one sample part for absorption was done on the vessel the other samples are kept in liquid nitrogen so  that further to be analysed in SIO, in case of nitrogen is not much the samples will be put in the scientific freezer. The samples for mineral optics were fixed by the glutaric dialdehyde on the glass flasks and sent to SIO.


B.8.4.2. Water sampling


     At two stations in day time from the sea surface will be sampled 10-15 l of water for detailed analysis. At the other depths taking into account the works to be fulfilled and the particle concentration in the water there will be sampled 5-10 l of water. To carry out this work it may take two bottles as a maximum.

     Table shows a maximal number of the levels where the couple water sample to the samples to be taken.



     Stations of depth less                 Maximal number of the levels

     than 500 m                                           6

        500-1500                                           4

       1500-2000                                           3

       2000-2500                                           2

  more than 2500                                         1



     The sample bottle water for hydrooptical studies were chosen on all other hydrological and hydrochemical samples completion.


B.8.5. Results


      The light rejection paramerters in the Japan Sea were studied including the specific chlorophil absorption. The coefficients of chlorophile including the specific absorption. The coefficients of chlorophile specific absorption can be used to establish the photosynthetic models of the studied region productivity. To obtain the aim the water samples taken on the euphotic zone to be measured. Besides, the samples to analyse the other phytoplankton components to be chosen.

     In a total to be sampled

a) 192 samples to analyse the particle and detritus absorption spectors at 36 stations; 44 out of  the samples being analysed in the cruise, the other ones to be sent for the analysis in SIO;

b) 44 samples to analyse the dissolved matter absorption spector. All were  analysed on board the vessel in the cruise;

c) 141 samples at 33 stations to analyse the organic carbon particles;

d) 92 samples to analyse phicoeritrine at 27 stations;

e) 118 samples to analyse phytoplankton pigments by the method of a high efficiency of liquid chromatography at 27 stations;

f) 80 samples to analyse aminoacids of micospirine types (photoprotectors of phytoplankton) by the method of liquid chromatography high efficienly at 27 stations;

g) 191 samples at 36 stations to determine chlorophile "a" concentration by the fluorescentic method;

h) 48 samples to analyse mineral optics at 8 stations.

     The water transparence is also measured by Secchi disk at 29 stations and reflected light polarization spector measurement by hand Simbad at 31 stations were produced.


B.8.6 Conclusions


     1) For the first time the large scale survy of the Japan Sea studied to be carried out by the up-to-date methods. On further result processing in the coastal laboratories the models describing the level of the initial organic production in the Japan Sea will  be constructed.

     2) The investigations carried out, will be used for SeaWeaFS data calibration.

     3) During the studies conducted in all the regions there were observed the summer minimum in phytoplankton evolution that was due  to high transparence by Sekki disk and low phytoplankton pigment concentration.



B.9. Synoptic eddies study over the North-West part of the Japan Sea: V. Ponomarev


B.9.1 Experiment aim


The aim of this expedition program is to determine the anticyclonic eddy structure over the NW part of the Japan Sea on the background of large scale oceanographic survey being produced within the basic program. It’s supposed to make assessment of the eddy effect on the hydrological and hydrochemical feature distribution in the intermediate, deep-sea and near bottom sea layers. In future, the obtained data can be used to make assessment of the vertical transport and heat, salt and chemical makers inflow in the deep sea layers.


B.9.2 Hypothesis being put in the background of experiment


In the cruise on the R/V «P.Gordienko» in April 1999 firstly there were obtained the hydrological and chemical feature distribution in three anticyclonic eddies over the Japan trough northward the subarctic (Polar) front. It was demonstrated that:

By the virtue of the essential number and long evolution of anticyclonic eddy formation their effect on the vertical transport of heat, salt, dissolved oxygen and nutrients of the Japan Sea can be essentially great.

Estimations of climatic changes in the Japan Sea fulfilled by PIO (Ponomarev, Salyuk, Bychkov 1996, Ponomarev, Salyuk 1997), Hokkaido University (Minobe 1996, 1997), Washington University (Riser 1997) and Seoul National University (Kim K.-R., Kim K. 1998) showed that on recently 20-30 years the Japan Sea deep layer winter ventilation decreased essentially. With this factor, the deep sea water temperature and their content of silicates increase and salinity and dissolved oxygen content decrease. In the upper layers of the Japan Sea proper waters (250-1000 m) the potential temperature more increases with time if compared to the lower waters. The vertical density stratification and thickness of the main pycnocline therefore also increases and the barocline effects, on the whole, for all over the sea strengthen.

On our opinion, when there lacks the deep water exchange through the Straits that is a character of the Japan Sea, the eddies of synoptic scale are one of the important physical mechanism causing the vertical heat flowing in the deep sea layers. If a number of the cold winters decreases as well as the deep water cooling due to the convective processes, including the slope convection and convection in eddies, the positive heat flowing seem to be dominated, caused by synoptic eddy dynamics, and potential proper sea water temperature increases from year to year. The hypothesis mentioned is the basis of the experiment planned to study the synoptic eddies.


B.9.3 Preconditions to choose the region of studies


Elements of the synoptic scale dynamics over the Japan Sea (anticyclonic and cyclonic eddies, warm and cold stream intrusions (streamers), meanders, rings, boundary currents, and upwelling structures) are well presented in the satellite pictures of high resolution within the infrared and radiolocational ranges. The most long living and stable elements of the synoptic dynamics are the anticyclonic eddies having here less spatial scales if compared to the ocean - 30-80 km. These eddies are well seen in the satellite pictures in the cold half of year due to temperature contrast. Therefore, their dimension, velocity of moving can be estimated, the individual eddy transport trajectory can be observed.

In April 1999, the joint cruise with POI and FERHRI on the R/V «P.Gordienko» was carried out, so that to define the peculiarities of the hydrological conditions in the South-West part of the Japan trough in the spring season. The task has been set, in addition, to determine the thermohaline characteristics of three anticyclonic eddies observed in the satellite pictures of the region studied.

In the cruise on the R/V «Prof.Khromov» in the second time the hydrometeorological sections were produced across of two eddies with a resolution to 7 miles. Taking into consideration the fact that the sections through eddies are directly connected with the large scale sections carried out by the main program of the Japan Sea survey.


B.9.4 The main objectives of the experiment


Š      to determine a distribution of hydrological (temperature, salinity, density, current velocities) and hydrochemical (content of oxygen, nutrients, pH and so on) features in two typical anticyclonic eddies of the North-West part of the Japan Sea in the middle of the summer season,

Š      to reveal the eddy structure variability occurred from April till August 1999


B.9.5 Expected methods of antyciclonic eddies studied


It’s suggested to fulfill the oceanographic sections with horizontal resolution of 7-10 miles , that are to cross two antyciclonic eddies in zonal and meridional directions. The eddy positions are preliminary defined by satellite pictures available and clarified in process of section producing. At each station of the meridional section crossing the eddy, there is a depth of specific isotherms location (5°, 2°, 1°, 0.75°, 0.5°) by the distribution of which the most probable eddy center position is determined, as well as latitude of the further zonal section across the eddy. Respectively, the oceanographic stations location on zonal section also clarified. The levels, where samples are taken, are chosen as CTD-probing happens. Sea water sampling is produced in a specific points of the temperature, salinity and oxygen content profiles by CTD-probing. Sampling vertical resolution from the upper layers to the lower ones decreases.

The additional observations and data taken in investigation results to be analysed:

1). The vessel meteorological observations on the vessel way and at oceanographic stations with a help of MIDAS are produced. In the period of the section fulfillment crossing the eddies, the meteorological observations are made at the interval of 2 minutes. Recording of meteorological data on magnetic carriers, the slip averaging at 10 minute window is carried out.

2). Standard visual observations on the cloudiness, sea surface state in the vessel meteorological terms are made. Besides, availability of the slick bands on sea surface and their orientation to the vessel running in area of anticyclonic eddies are fulfilled in a visual way.

In perspective it’s supposed to carry out detailed analysis of the data observed in anticyclonic eddies using temperature, salinity (CTD), current velocities (ADCP), content of oxygen and nutrients.


B.9.6 Preliminary scientific results


By satellite pictures and CTD probing the anticyclonic eddies on the investigation migrated (from April till August 1999) by 15-20 miles, mainly, eastward. Along with, center of the first east eddy has the northward shifting, but center of the second west eddy has the southward one. The eddy center positions changes marked, are in correspondence with their general migration over the Japan basin slopes against the clockwise that has prior shown in Lobanov, Danchenkov, Nikitin, 1998.

Figures 9.1-9.10 show sistribution of temperature, salinity, density and oxygen on individual sections crossing the anticyclonic eddies. These distributions demonstrate the preliminary research results that are formulated as the following conclusions and summary.

The thermohaline structure changes of two studied anticyclonic eddies occurred during four months (April-August 1999) are essential, mainly, in the upper layer with thickness of 100 m in accordance with annual variation of hydrological conditions.

In the cold period the minimal vertical temperature, salinity and density gradients were marked in the central eddy part in near surface layer with a thickness of 100-150 m.

In the warm period the minimal vertical gradients of the features marked are observed below the seasonal pycnocline having the curvature of opposite sign as compared to the curvature of the main pycnocline. The eddy core has a form of the infrathermocline lens where are involved in the less salinity surface waters from the eddy periphery (fig. 9.5) in a form of stream intrusion from the north-west. On the core periphery in the main pycnocline as on the sea surface there are observed stream intrusion of the salt subtropical waters from the south (fig. 9.2).

The evident changes in thermohaline eddy structure below the levels of 170-200 m were not discovered. Differences of the north-east (eddy 1) and south-west (eddy 2) eddies are almost the same as were observed in April 1999.

The south-west eddy has more horizontal (to 120 km) and vertical (to 2000-2500 m) scales if compared to the north-east eddy (fig. 9.1-9.6). It’s characterized by more contrasts in salinity distribution of the main pycnocline, has more fresh and warm waters in core, more asymmetry and axis inclination than the north-east eddy.

On the whole, by the preliminary estimations of the horizontal gradients for the potential temperature and salinity in the lower deep sea and near bottom Japan basin layer (deeper 2000 m) the effect, at the least, of the south-west eddy to the temperature and salinity distribution has place almost to the basin bottom. The temperature, salinity (CTD), current velocities (ADCP) data showed that the anticyclonic eddy dynamics is interrelated to the large and synoptic scale circulation being under influence of the bottom topography in the deep sea and near bottom Japan basin layers.


B.9.7 References


Kim K.-R., Kim K. (1997) What is happening in the East Sea (Japan Sea): Recent chemical observations during CREAMS 93-96. J. Korean Soc. Oceanogr., 31, p.163-170.

Lobanjv V.B., Danchenkov M.A., Nikitin A.A. (1998) On the role of mesoscale eddies in the Japan Sea water mass transport and modification. Oceanography, Vol. 11, No 2, Supplement, p.46.

Minobe S. (1996) Interdecadal temperature variation of deep water in the Japan Sea (East Sea). Proc. Fourth Workshop CREAMS, Vladivostok, February 12-13, 1996, p.81-88.

Minobe S. (1997) Climatic variability with periodicy of 50-70 years over the North Pacific and North America. Proc. CREAMS’97 Int. Symp., Jan. 26-31, 1997, Fukuoka, Japan, p.149-152.

Ponomarev V.I., Salyuk A.N., Bychkov A.S. (1996) The Japan Sea water variability and ventilation processes. Proc. Fourth Workshop CREAMS, Vladivostok, Feb. 12-13, 1996, p.63-69.

Ponomarev V.I., Salyuk A.N. (1997) The climate regime shifts and heat accumulation in the Sea of Japan. Proc. CREAMS’97 Int. Symp., Jan. 26-31, 1997, Fukuoka, Japan, p.157-161.

Riser S.C. (1997) Long-term variations in the deep ventilation of the Japan/East Sea. Proc. CREAMS’97 Int. Symp., Jan. 26-31, 1997, Fukuoka, Japan, p.31-34.


Fig. 9.1. Distribution of potential temperature on the section along 134°E, crossing the anticyclonic eddy 1, stations 157-178.

Fig. 9.2. Salinity distribution on the section along 134°E , crossing the anticyclonic eddy 1, stations 157-178.

Fig. 9.3. Distribution of potential density on the section along 134°E, crossing the anticyclonic eddy 1, stations 157-178.

Fig. 9.4. Distribution of potential temperature on the section along 41°15'N, crossing the anticyclonic eddy 1, stations 166-172.

Fig. 9.5. Salinity distribution on the section along 41°15'N, crossing the anticyclonic eddy 1, stations 166-172.

Fig. 9.6. Distribution of potential density on the section along 41°15'N, crossing the anticyclonic eddy 1, stations 166-172.

Fig. 9.7. Distribution of potential temperature on the section along 40°45'N, crossing the anticyclonic eddy 2, stations 188-194.

Fig. 9.8. Salinity distribution on the section along 40°45'N, crossing the anticyclonic eddy 2, stations 188-194.

Fig. 9.9. Distribution of potential density on the section along 40°45'N, crossing the anticyclonic eddy 2, stations 188-194.


Fig. 9.10. Distribution of potential temperature on the section along 131°30'E, crossing eddy 2, stations179-203.




Appendix A: CTD data quality comments (M. Johnson, SIO/ODF)

## KH36 notes:


162/01  hit bottom; truncated pseq data before hit

175/01  hit bottom; truncated pseq data before hit

176/01      digitized data start in-water, +1db added to pressure values for entire

        cast (compared raw pressure/temperature values at surface to nearby casts)


## Pressure levels interpolated (missing data, or omitted instabilities at surface):


 116/01    0,30,34 db

 117/01    0 db

 118/01    34 db

 120/01    18-20 db

 145/01    540 db*

  91 casts/8 levels interpolated


*145/01 cast restarted shipboard; 464-638db data are missing in

      shipboard-digitized raw CTD data file.  Recovered most

      by redigitizing missing area from vhs tape and cleaning

      up extremely high noise levels.



## winch stops/yoyos on down casts (not at surface or bottom of cast):


114/02      1.5 mins. at 42 - 52 db       ## maxp 1068

120/01      1.5 mins. at 1936 - 1942 db   ## maxp 1976

151/01      3 mins. at 1960 - 1964 db     ## maxp 3186

155/01      4 mins. at 722 - 728 db       ## maxp 3652

161/01      43 mins. at 1860 - 1864 db    ## maxp 3414

        also, 14 db yoyo here (1862 back to 1848 db down)

172/01      11 mins. at 3366 - 3372 db    ## maxp 3504



## Conductivity offsets:  OC = Offset Conductivity   OS = Offset Salinity

      (all these casts are deeper than 3000db)


153/01  788-822 db    #OS/+0.145 to +0.215 PSU

154/01  558-564 db    #OS/+0.26 to +0.44 PSU

166/01  720-914 db    #OC +0.003 mS/cm

183/01 1428-1442 db   #OS/+0.013 to +0.086 PSU

184/01 1116-1128 db   #OC +0.004 mS/cm

190/03 1226-1230 db   #OC +0.001 mS/cm

190/03 1228-1300 db   #OC +0.005 mS/cm



Appendix B: Bottle data quality comments


Bottle data quality comments

Japan East Sea

Summer 1999

Khromov  KH36

Contact:  Lynne D. Talley




For salinity: batch P134 was used on kh36, kh38 and xp00


kh36 quality comments - console log sheets, sample log sheets,

bottle sample log book, salt, oxigen, nutrients analysis logs.


qflg = 4  bad value

qflg = 3  suspicious value

qflg = 2  good value


Leg 1 (test cruise):


Station 114 02

CTD 5, big Rosette

Cast 01 - winch stop on way down. Wire problem.

Cast 02 - some double samples for optics. Duplicates delete

          from H00. Save in H00.svd.

DLOG - 205 SiO3 too low (qflg = 3)

       207 sal - low (qflg = 3)


Station 115 01

CTD 5, big Rosette, bad weather, rolling, deck overflow during station.

SLOG - Bottle 15 - stopcock pushed hardly.

DLOG - 101 PO4 high, probably OK (qflg = 2)


Station 116 01

Too rough for work with big Rosette. Wind 15 m/c.

CTD 3, small Rosette.

Some double samples for optics. Duplicates delete

from H00. Save in H00.svd.

CTD salinity spikes in strong T gradient.

SLOG - Bottle N9 broke spigot boarding, no samples.

       Station N 116 01 used twice in computer.

       Bottles NN 2, 14, 9 - leak prior to venting

       (when stopcock pushed in and vent closed).

DLOG - 101 not enough water for salt, nuts.

       102 not enough water for oxy. Salt missing.

       109 not enough water for salt, nuts, oxy.

       114 not enough water for salt, nuts, oxy.

       102 bad salt, nuts.

       104 bad all salt, nuts, oxy (qflg = 4)

Edited H00 file - bottle 4 delete. Save values in H00.svd

                  bottle 2 deleted. Save values in H00.svd.

Station 117 01

CTD 3, small Rosette.

CTD salinity spikes in strong T gradient.

SLOG - Bottles NN 4,5,11,14 - leak prior to venting.

DLOG - 111 no sample for oxy.

       102 SiO3 hight (qflg = 3).

       101 -salt too hight. No flush between std and sample 1 (qflg = 4).

       Change value on -9.0 in H00. Save value in H00.svd.

       Autosal - check end worm std. Use 1.99984 for end worm.


Station 118 01

CTD 5, big Rosette.

Bottle N15 - stopcock difficult to close.

DLOG - autosal - 109 salt too hight (qflg = 4). Large difference between

       bath temp. and sample temp. Salt drift due to evaporation?

       107 - salt too hight (qflg = 3)   

       102 - salt too hight (qflg = 4)


Station 119 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.

DLOG - autosal - 106 salt too hight (qflg = 4). Large difference between

       bath temp. Salt drift due to evaporation?


Station 120 01

CTD 5, big Rosette.

Surface - double sample for optics. Duplicate delete from H00.

Save in H00.svd.

DLOG - 105 SiO3 hight (qflg = 3).


Station 121 01

CTD 5, big Rosette.

CTD - no comment.

DLOG - 102 oxy hight (qflg = 3).


Station 122 01

CTD 5, big Rosette.

CTD - no comment.


Leg 2, northern Japan Sea


Station 123 01

CTD 5, big Rosette.

No record on the VCR.

DLOG - 105 - salt. Diff C and S hight. Hight temp. grad.

             Probably OK (qflg = 2).


Station 124 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.

DLOG - AUTOSAL - shange bottles number in rs\12301 and rs\12301.lst.

       save wrong value in rs\12301.svd and rs\12301d.lst.


Station 125 01

CTD 5, big Rosette.

SLOG - Bottle N5 - vent did not closed


Station 126 01

CTD 5, big Rosette.

SLOG - Bottle N10 - stopcock broken during recovery, samples taken.

DLOG - AUTOSAL files - change station number from 127 to 126 (126 - correct).      


Station 127 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.

DLOG -AUTOSAL - Bad salt. End worm std = 2.00580. Too hight to standardize.


Station 128 01

CTD 5, big Rosette.

DLOG -AUTOSAL - Bad salt. End worm std = 2.00580. Too hight to standardize.

      Change AUTOSAL N 503 on AUTOSAL N 268.


Station 129 01

CTD 5, big Rosette.

No comment


Station 130 01

CTD 5, big Rosette.

No comment


Station 131 01

CTD 5, big Rosette.

No comment


Station 132 01

CTD 5, big Rosette.

No comment.


Station 133 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.

DLOG - 104 - salt hight (qflg = 3).


Station 134 01

CTD 5, big Rosette.

DLOG - AUTOSAL - two end worm value.


Station 135 01

CTD 5, big Rosette.

DLOG - 112 - salt too hight (qflg = 4). In file H00 shange on -9.0000. Save

       in H00.svd


Station 136 01

CTD 5, big Rosette.


Station 137 01

CTD 5, big Rosette.

DLOG -AUTOSAL - Bad salt. End worm std = 2.00469 too hight to standardize.

                Edit files RS\13701 and 13701.lst for checking salinity.

                Original files saved as RS\13701.svd and 13701d.list.


Station 138 01

CTD 5, big Rosette.

DLOG -AUTOSAL - Bad salt. End worm std = 2.00469 too hight to standardize.

                Edit files RS\13701 and 13701.lst for checking salinity.

                Original files saved as RS\13701.svd and 13701d.list.


Station 139 01

CTD 5, big Rosette.


Station 140 01

CTD 5, big Rosette.


Station 141 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.

DLOG - change bottle number in rs\13901 according Small Sample Log


Station 142 01

CTD 5, big Rosette.

One stick of hook lost during recovery CTD.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.

CTD oxygen bad.

DLOG - AUTOSAL - wrong samples number from 010 to end. Change according

       Sample Log in rs\14701 and 14701.list files. Save old as 14701.svd and



Station 143 01

CTD 5, big Rosette.

New CTD oxygen sensor installed before station.


Station 144 01

CTD 5, big Rosette.

DLOG - 103 - low salinity (qflg = 3)

       101 - salinity too hight (qflg=4)


Station 145 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.

CTD acquisition computer error on downcast. Computer restarted as cast 2.

Record in two files - 14501.raw and 14502. raw. Continous record on VCR.

File 14503.raw - rewrite from VCR.

DLOG - Files and save in and renamed in New used in H00 file.


Station 146 01

CTD 5, big Rosette.

DLOG - 119 - NO2 too hight (qflg=3).

       120 - diff C and S too hight. Strong grad. Probably OK (qflg=2)


Station 147 01

CTD 5, big Rosette.

DLOG - 108 -no oxygen, bad titration.


Station 148 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.

DLOG - AUTOSAL - ship electricity system break during measurements.

       No end worm std.

       RS\files - 14801 -added worm end std R1=1.99979 R2=199979.

       Save original as 14801.svd


Station 149 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.

DLOG - AUTOSAL - ship electricity system break during measurements.

       No end worm std.

       New worm std after bottle 107.

       RS\files - 14901.svd and 14901d.lst - part down to 0107

       typed handly from 14801 and 14801.lst.

       Files 14901 and 14901.lst after edition. Added real worm 0100

       std R1=1.99979 and R2=199979. Deleted typed lines. From 0108 -

       real salt data. only 18 trips (19 OK). Duplicated 016 trip values

       for 017 in H00 file.



Station 150 01

CTD 5, big Rosette.

Rosette catch fisherman wire during recovery.

DLOG - 107 - no oxy due to bad titration.


Station 151 01

CTD 5, big Rosette.

DLOG - 121 - no oxy due to wrong titration.


Station 152 01

CTD 5, big Rosette.

DLOG - autosal files RS\15201 and 15201.lst after edition. Deleted

       wrong lines. Save original as 15201d.lst and 15201.svd.


Station 153 01

CTD 5, big Rosette.

DLOG - autosal - files 15301 and 15301.lst - deleted first 0102 line

       (typed wrong value) and first end worm value. Save in 15301.svd

       and 15301d.lst.


Station 154 01

CTD 5, big Rosette.


Station 155 01

CTD 5, big Rosette.

DLOG - autosal - 0115- deleted first 0115 line with wrong salt.

                 Operator's mistake-first 0115=0116. Save in rs\15501.svd


Station 156 01

CTD 5, big Rosette.


Station 157 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.


Station 158 01

CTD 5, big Rosette.

DLOG - autosal - two 0115 lines. Operator's mistakes.

       First is wrong, deleted. Save in RS\15801.svd


Station 159 01

CTD 5, big Rosette.

Double sample for optics near surface. Duplicate delete from H00. Save in H00.svd.


Station 160 01

CTD 5, big Rosette.

SLOG - Bottle 24 close in air

       Wire damaged, cut dangerous part.

       Records on VCR stop during station.

DLOG - salt sample bottles N 7, 17 brouken.


Station 161 01

CTD 5, big Rosette.


Station 162 01

CTD 5, big Rosette.

SLOG - altimetr did not work.

DLOG - 102 - salt hight (qflg=3)

       112 - salt hight (qflg=3)

       116 - salt low (qflg=3)


Station 163 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.

(ldt 10/10/99: DAB in sum file must be wrong - says close to

bottom but station ends at about 2000)


Station 164 01

CTD 5, big Rosette.


Station 165 01

CTD 5, big Rosette.

DLOG - Autosal - St. 165 processed as 164. Rename files rs\

       16401 in 16501. Change number of station and box number.

       Save in rs\16501.svd and 16501d. lst.


Station 166 01

CTD 5, big Rosette.

DLOG - Autosal - Operator's  mistake. Change box number from 003 on 004

       according Sample Log Sheet.

       bottle 12 - SiO3 low (qflg = 3).


Station 167 01

CTD 5, big Rosette.


Station 168 01

CTD 5, big Rosette.


Station 169 01

CTD 5, big Rosette.


Station 170 01

CTD 5, big Rosette.

DLOG - 105 NO3 low. Local oxy max. Probably OK (qflg=2)


Station 171 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.


Station 172 01

CTD 5, big Rosette.

DLOG - salt 108 - lid broken (qflg=4).

            104 - salt hight (qflg=3)


Station 173 01

CTD 5, big Rosette.

SLOG - bottle N 18 -no sample for nutrients.


07 08 1999 - Computer virus "monkey" find on OXY f-disk.

             Cheking all f-disks and this computer.

             No virus.


Station 174 01

CTD 5, big Rosette.


Station 175 01

CTD 5, big Rosette.

SLOG - altimetr did not work.


Station 176 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.

DLOG 114 -no oxy.

(note that DAB in sum file is wrong - station does not go to bottom

10/9/99 ldt)


Station 177 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.


Station 178 01

CTD 5, big Rosette.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.

SLOG - freons -bottle N6 -lid broken

       salinity - two end worm std. First deleted, save in rs\17801.svd.


Station 179 01

CTD 5, big Rosette.

DLOG - 102 -oxy hight (qflg=4)


Station 180 01

CTD 5, big Rosette.

SLOG - Noble G from bottle N5 -tube broken. Samples from bottle N6.

Some double samples for optics. Duplicates delete from H00. Save in H00.svd.


Station 181 01

CTD 5, big Rosette.


Station 182 01

CTD 5, big Rosette.

Surface double sample for optics. Duplicates delete from H00. Save in H00.svd.

SLOG - Before St. 182 change position  of bottles N 1 and 2 on Rosette.

       Bottle N 1 replace on place N 2, bottle N2 on N 1. Change bottles mark.


Station 183 01

CTD 5, big Rosette.


Station 184 01

CTD 5, big Rosette.


Station 185 01

CTD 5, big Rosette.

SLOG - Bottle N 10 air leak prior to venting.


Station 186 01

CTD 5, big Rosette.


Station 187 01

CTD 5, big Rosette.


Station 188 01

CTD 5, big Rosette.


Station 189 01

CTD 5, big Rosette.


Station 190 01

CTD 5, big Rosette.

CTD only.

(WHY??? any log book notes? ldt 9/10/99)

Use this cast since cast 3 has bad offsets


Station 190 02

CTD 5, big Rosette.

Only CTD - Upcast from 1850 m. No confirm after bottle N 7.

     No sampling, station repited as cast 3.


Station 190 03

CTD 5, big Rosette.

CTD conductivity offset downcast.

(NOTE LDT 9/10/99:  offset is 1090-1136 and 1232-1304  - Use CAST 1!

Looks like slime.)


Station 191 01

CTD 5, big Rosette.

Surface double samples for optics. Duplicates delete from H00. Save in H00.svd.


Station 192 01

CTD 5, big Rosette.

CTD - winch stop upcast

Surface double samples for optics. Duplicates delete from H00. Save in H00.svd.


Station 193 01

CTD 5, big Rosette.

Surface double sample for optics. Duplicates delete from H00. Save in H00.svd.

SLOG - Bottle N15 -no confirmation at 400 db? (did not push fair button ?).

       Bottle N 15 close at 300 db.

CTD - winch stop upcast


Station 194 01

CTD 5, big Rosette.

SLOG - vent of bottle N 2 did not close strongly, leak slightly.

DLOG - oxy bottle N 1 hight (qflg=4).


Station 195 01

CTD 5, big Rosette.


Station 196 01

CTD 5, big Rosette.

CTD - Bottle N 1 and 2 - no confirmations on SBE deck unit. Change SBE unit.

      Open upcast file 19602.


Station 196 02

CTD 5, big Rosette.

Surface double sample for optics. Duplicates delete from H00. Save in H00.svd.

SLOG - CTD upcast. Bottle 1 - no comfirmation.

       DLOG - salt, oxygen, nutrients processed as ...19601... Change

       files name and cast number in files.

DLOG - Bottles N 1,2,3 -same depth, oxy diffrent.


Station 197 01

CTD 5, big Rosette.

Surface double sample for optics. Duplicates delete from H00. Save in H00.svd.


Station 198 01

CTD 5, big Rosette.


Station 199 01

CTD 5, big Rosette.


Station 200 01

CTD 5, big Rosette.

SLOG - N 2,4,6 - double samples for oxygen.


Station 201 01

CTD 5, big Rosette.


Station 202 01

CTD 5, big Rosette.


Station 203 01

CTD 5, big Rosette.