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STEADY TWO- LAYER SOURCE-SNK ROV

Lynne Talley

I. Introduction

Ocean circulation can be thought of as being forced almost entirely by
heating and cooling, whether directly, as a result of heat transfer across the
ocean surface, or indirectly by the winds which arise from heating and cooling
of the atmosphere. In this paper we will be mainly interested in extremely
idealized circulation produced directly by cooling and heating. Mawy simpli-
fications are made with respect to the flow, the basin geometry and the type
of forcing but it is hoped that insight will be gained into the circulation in
regions where cooling and heating are particularly important. W specifically
have in mind the circulation of the northern North Atlantic, the Norwegian-
Greenland Sea and to a lesser extent, the Labrador Sea. The Norwegian--
Greenland Sea is particularly well known as the source of the cold saline
Bottom Water which enters the North Atlantic in deep western boundary currents
and which contributes its characteristics to the North Atlantic Deep Water.
Bottom Water is formed in the large cyclonic gyre occupying the Greenland Sea
from inflowing Atlantic Water (Carmack and Aagaard, 1973) which enters the
Norwegian Sea as the broad northward Norwegian Current. It subsequently
appears to become more topographically controlled as it strengthens on the
eastern flank of the Jan Mayen Ridge, flows through the gap in the East Jan
Mayen Ridge and then along the eastern side of the Greenland Basin where it
forms the eastern side of the cyclonic Greenland Sea gyre (Metcalf, 1960).

To some extent, there is a similar process in the Labrador Sea, although

the dense water which is formed there is an Intermediate Water rather than



Bottom Water. There also, a cyclonic gyre is the scene of production of dense
water, fueled by the inflow of Atlantic Water in the West Greenland Current
and colder fresher water from the north.

The model discussed here is a steady extension of the time dependent two-
layer model investigated analytically and numerically by Gill (1979b) and the
time dependent axisymmetric model of Gill et. al. (1979). It is a steady two-
layer model, intended for instance to model the upper Atlantic Water and deep
Bottom Water of the Norwegian-Greenland Sea, in which cooling is introduced as
simple mass and momentum transfer from a layer of density y to a layer of
density PZ « Wewill not concern ourselves with the actual mechanism for
production of denser water, but rather with the resulting circulation. Steady
linear solutions for the baroclinic mode will be sought for various types of
distributed transfer in a meridional channel and then for point transfer in a
horizontally infinite ocean, on the f and # planes, motivated by the appar-
ent presence of large scale density currents and localized Bottom Water forma-
tion in the Norwegian-Greenland Sea. The effects of bottom friction and
topography are not included.

Formulation in terms of a two-layer model is Largely motivated by the
apparent two component nature of the Norwegian-Greenland Sea circulation. We
undoubtedly lose some information about the vertical structure of the flow but
can, nevertheless, see the broad outlines of the forced solution.

Wewill see that inclusion of diffusion in a steady two-layer model implies
the possibility of eastern boundary layers in both f and P plane steady
ocean circulation models.

II. Equations

The two-layer system is illustrated in Fig. 1. 'n1 is the variable height

of the upper layer, H2 its rest value and h = Hl - h1= h2 the height of



the interface above its resting value h = 0. Py is the density of the upper
layer, P; its pressure and p the value of the pressure at the rigid 1id. The
depth integrated equations of motion and continuity for the

two layers are:
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Fig. 1. Two-Layer Ceonetry.



We make the Boussinesq approximation and have already included hydrostatics in
writing the x and y momentum equations where 3’: P‘E'r—-'u'fl-.. Q is the mass
transfer from the top to bottom layer, ur_l'l the coef?icient of momentum
transfer and ¢* the coefficient of diffusion. W have also included wind
stress although, in the absence of bottom friction, the barotropic component
of the flow can never be steady. The term é*h is absolutely crucial for 'the
existence of steady solutions in the presence of a nonzero mass transfer Q
since continual transfer without damping would imply continual spinup. One
way of obtaining diffusion terms of this form is by using a normal mode analy-
sis. |If the buoyancy frequency N is constant, the variations in the vertical
are sinusoidal with a fixed wave number m for each mode. Thus the operator

g 2"
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can be replaced by

El_ +l-,u:|'|:

dt
for this particular mode, and the latter operator is the one used here. The
coefficient sz varies from mode to mode, but here only one i s considered.
The same method can be used if N is not constant, but only if the diffusion

coefficient varies with height in a suitable manner.

We look for steady and linear solutions. The appropriate scaling for the

problem is
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The resulting nondimensional equations are
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(If the primary driving force were the wind, velocity would be scaled accor-
ding to wind stress T _ and not mass transfer Q,).

We would like to look separately at the baroclinic and barotropic flows

and therefore form the sum and difference equations with u = £ Yy and
i = u_ -
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If we now introduce a stream function ¥ for the baroclinic solution which is



geostrophic to lowest order {"f":'}]- h), and arbitrarily assume that 251=

El = €, rhe barocliniec vorticity equation is approximately

2 (1] ¥,
€T h + fhy - eh = @ — - :ﬁ"j (2.5)
fQo

The boundary conditions are for no normal flow through any barriers, that

is
0 = -In3 - EW = at meridional barriers (2.6)
v = b, +EL = o at zonal barriers

(In general, the apparently more rigorous conditions u = U, = 0 or vy =

v, = 0 will be met by solutions with boundary conditions (2.6) as long as no

extra conditions are put on the flow.)

III. Meridionally Uniform Flow

i) t plane, © =0

We will begin with the simplest possible case: steady, meridionaltly
uniform forcing of the form Q(x) on the f plane with no wind stress, in a
channel of width 2L centered at x = 0. The f plane, y independent vorticity
equation which must be satisfied is

e('nxx - h) =-q (3.1a)

subject to the boundary conditions U= =¢h =0 at x +L
The simplest subcase of this is uniform sinking everywhere, & = A . The
equally simple result is that

h =

A
£

(3.2)



In other words, the upward motion of the interface due to uniform sinking
everywhere i s balanced by upward diffusion everywhere. There are no veloci-
ties associated with this displacement.

If we allow for x variation in the forcing so that Q = Ax, the principle
balance in the interior is still between forcing and diffusion (the particular
solution to (2.5) is =A~e’i ) . However, because the interface is now tilted,
meridional geostrophic velocities are generated which have zonal 0(e) veloci-
ties associated with them. The resulting solution which satisfies the no nor-

mal flow boundary conditions at x = + L is

h = A x = sinhx (3.3)
i Codh L

which is the interior particular solution corrected with boundary layers at
the two walls. In the neighborhood of the wall x = L, the solution (3.3) is

of the form W= AE (% - ) with an exponential boundary layer correction.

Jaw

3
If we had retained the separate friction and diffusion parameters Ze and

The dimensional width of the boundary layers is the Rossby radius R =

z L.
2 from 2.4k}, the dimensional boundary layer width would be [_E' [:'_—— .

As the "friction" 251 is increased the boundary layer width increases, and

s "diffusion™ ¥, is increased, the boundary layer width decreases.
The boundary layers result from the deformation of the interface at the
wall caused by the nonzero zonal velocities in the interior. As the interface

is pushed up or down, geostrophic boundary currents are created which in turn

have 0{(e) zonal velocities associated with them which oppose the interior zonal



flow. A balance is achieved in the boundary layer where the up or downwelling
caused by interior zonal velocities is exactly balanced by diffusion.
A schematic diagram of this flow is shown in Fig. 2 where the velocities

associated with the two parts of the solution are shown separately.
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Fig. 2. Cross setion of the flow associated with the
sink Q = Ax, £ plane. The upper row of velocities
in each layer are the velocities associated with
the interior solution while the lower row of veloci-
ties are associated with the boundary correction.

If we go to more complicated y independent forcing of the flow, the only
additional result is that the interior flow gains relative vorticity in addi-
tion to an interface displacement. The boundary layer structure remains the
same. An example of this is the flow due to the transfer ¢ = Asin kx which

has the full solution

h = — A |"Is‘mk; - CosklL stabx V| (9.4)
ey + k) | Cosh L



The interior solution thus has both relative vorticity as well as an interface
displacement while the boundary correction is still the familiar exponential
correction.

(One further note is that ¢ = Asinhx causes a resonant response which no

amount of damping can cause to be steady.)
(ii) £ plane, 7 = 0

If a north-south wind blows through the channel an additional component
of zonal velocity is induced, namely, the Ekman flux at right angles to the
wind. It is not strictly correct to include the wind in this model since there
is no bottom friction to damp out the barotropic component of wind induced
stress without further damping. Because a nonzero Ekman flux can arise from a
uniform wind, we get interior 0(e) velocities for 0(1) boundary currents with-
out interior interface displacement. If, for instance, T = 31‘0, the full

solution is
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in which the zonal velocity i = —To i s compensated by boundary currents in



both sides. (The equations have been fescaled with 2= T=
iii) B plane

Inclusion of variations of the Coriolis parameter allows for the pos-
sibility of different vorticity balances, as is well known in studies of
steady ocean circulation where interior change in planetary vorticity occurs
more readily than interior change in relative vorticity. Inclusion of vortex
stretching in steady £ plane ocean circulation models can modify boundary
layer and possibly interior balances, depending on the magnitude of the dif-
fusion relative to the A effect.

The vorticity equation (2,5) is a steady statement of the potential vor-

ticity equation

. h o+ ER {3.8)

where we allow for diffusion in addition to frictional dissipation. W can
find solutions to (2.5) directly from the equation and boundary conditions or
use the Longuet-Higgins transformation to get us back to an f plane type
equatiof®which has already been solved for various transfers Q. That is,

. . KX B . .
letting hix,y) = @Wix,yle  where x = - - equation (2.5) (without
wind stress) becomes

Frle - (k' + 1Yy = % “kx (3.7}

Uniform forcing Q = A yields the same solution as on the f plane, h:% '

The balance is still purely between the input of vorticity by the source-sink



and diffusion. Linear forcing Q = Ax implies a slightly different particular

solution
— A i
W = R

which is the linear f-plane solution shifted to the west by the J‘}. effect.

Using (3.7) to obtain a full solution we find that
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4 plane it makes more sense to look at approximate solutions

Clearly, on the
in various regions of the basin rather than solving the problem exactly.

The general solution from which (3.8) was obtained is

e el
' By ME s o £
(3.9
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Even without solving explicitly for cq and c,. we can see that near an

eastern boundary, the dominant first term will yield a boundary layer width of

III : + 1 = -_E
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which is larger than the boundary layer width near a western boundary,

(g = .8
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€ skews the entire solution to the west.
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The term e
and

dependence of the eastern and western boundary layer i s approximately e

£y
€ illustrating even more simply the shift to the west.

e respectively,

On the f plane, the vorticity balance in both the interior and boundary

regions includes relative vorticity, diffusion and forcing, i1.e. all of the



terms available, except in the case of especially simple forcing. On the /5 B

plane, the extra planetary vorticity term has the effect of allowing different

balances in different parts of the basin. |If the interface height varies
slowly with x, such that x = % , the vorticity equation (2.5) becomes

3 i . T

Ehn t Elphy =hl = -q

so the dominant balance is clearly
plhy - h = -? (3.10)
whose solution corresponds to a broad eastern boundary layer, dominated by
changes in planetary vorticity and vortex stretching.
If fp#> & (2.5) becomes
I-':': hx = ~Q (3.11)
which is the classical Sverdrup balance. Diffusion is not at all important
here and will also not be important in the western boundary layer. The
Sverdrup balance can perhaps be thought of as a limiting case of the eastern
boundary layer from (3.10).
In regions where the interface height varies rapidly with X, such that x =
EX, the vorticity equation {2.5) bcomes
hyy + phy = o (3.12)
whose solutions correspond to a narrow western boundary layer, dominated by
changes in relative and planetary vorticity.
Thus, with the Ex term we can match solutions in various regions in
addition to trying to solve the problem exactly. For example, the problem
solved exactly above with Q = A can be solved approximately with (3.10) and

(3.12) and found to be
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a substantial simplification of (3,8) for % 1.

On both the f and B planes we see that eastern and western boundary
layers occur whenever the interior zonal velocity is nonzero, whether it is
forced directly as an Ekman flux by the wind or more indirectly as a result of
the geostropic flow due to divergences created by mass transfer or wind stress
curl. Steady solutions with this boundary layer structure are possible only
because of the diffusion term eh which allows a damped form of vortex stretch-
ing to occur in steady flow.

With the structure of solutions on the f and IE' planes for meridionally
uniform flow i n mind, we move to forcing which may vary with latitude.

IV. Zonally Uniform Forcing i n a Meridional Channel

What is the result of cooling which varies with latitude? As a simple
case, we will consider cooling which is uniform and positive (transfer to the
lower layer) in a northern basin and zero to the south with a transition region
between which is wider than the Rossby radius but not as wide as —t.— . (We
could equally well choose any uniform value for the two halves of the basin.)
We have in mind an enclosed sea like the Norwegian Sea but make the simplifica-
tions that a) the basin length is greater than -é— and b) curvature of the
basin occurs on a scale larger than the Rossby radius.

The geometry we are considering is illustrated in Fig. 3. For simplicity
we will assume that Q = A fory > 0, Q=0 fory < -Mand Q = A(L + y) in
the transition region. This will necessarily lead to discontinuity ithhe
zonal velocity at y = 0, =M but is simple to solve, and has the essential fea—
tures of a solution with smoother forcing.

The worticity equation becomes

E..l'l.“ + h_')‘j) - h = - Q (4-'&)



subject to the boundary conditions

= -hy -~ ¢h
u ¥ X =
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h = at y=-M (4.1b)

h continuous at y = 0
We consider the solution in three stages: i) solution for ~M ¢ y ¢ 0 with no x
dependence, ii) solution near x = + L with large scale variation iny and iii)
matching the solutions in the corner near X = L, y = 0. It will be seen that
variation in forcing Q with latitude allows Kelvin wave-like disturbances to
be found far to the north in the region of uniform @ which would otherwise be
undisturbed. Thus we may in some way be able to model a more global forcing
of the eastern boundary current in the Norwegian Sea than we could otherwise

obtain with local winds and forcing.

i} The solution for -M ¢ y < 0 with :—ﬁ= 0 is just the particular solu-
ElOn
o {2 I
g AR (4.2)
which has a zonal geostrophic velocity u = - EAM and meridional Ekman velocity
w = -Ehv =-%.| associated with it. Thus for A > 0, there i s an eastward (and

northward) density current in the upper layer and the opposite in the lower
layer.
i1) In the regions where ¢ = A and @} = 0, we stretch the y coordinate by &

so that y = % . The vorticity equation (4.1a) is then approximately (to (e}

subject to the boundary conditions

u== E'ihI +h,) =0atx= L



Letting

h = % i I:l';"_;]tx_[ . EEIf:.‘i-nz_l'r:".'*]"}I

the only solution which decays away to the north, where Q = A, is

hea+Cal®l

T 1
and likewise, the solution which decays away to the south, where Q = 0,is
b s t]’—hh-l-:
2

if there were a wall to the south at x = -L, These correspond to boundary
layers with width equal to the Rossby radius Ro and length of Ro y decay-
ing away from the region of varying Q. Considering only the solution to the
north, the constant c; can be determined by matching transports i n the boun-

dary layer at y = 0 with the eastward transport in -M < y < o. W thus obtain

L R (4.3
by - Erq ¥ "",l

s 2
3

for the boundary layer decaying away to the north.

iii) In the corner near y = 0, x = L, the vorticity equation is

hin"'hjy—J/\:—-?:'Li%'l
subject to the boundary condition
u=-<-h =0 at x = L,
Y
h =0 aty = -M
ho= a(-e L) at y = 0
€

The vorticity equation is separable and the solution which fits the boundary

conditions is

{1 o %]I’]—;_F'_} -M < Y4 LD (45.54)

™=



The full solution for the basin is

f - K + A =1
l%-r" -ﬂj ) TEL

h o= (4114 URY (R Gl Mm<y<o {4.5)
Lo Ij-r:'-""l

We note particularly that the zonal velocity is identically zero for y » 0
{a characteristic of a Kelvin wave) and that there i s a nonzero geostrophic

meridional velocity along the eastern coast for y * 0 which is solely due to

the variation in Q from - M <y ¢« 0, The upper layer velocities associated

with the interface displacement (4.5) are shown schematically in Fig. 3.
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Fig. 3. Geometry and velocities when Q = Q{y): specifically,
Q=Afory>0, Q=4(1 +y) for-Mcy <0 and Q =
for y < -M. M
It appears then that the steady signature of the Kelvin wave, which would
arise in the time dependent case and travel up the eastern coast to the north,
i s a boundary current which eventually damps out to the north due to fric-

tion. Therefore, even in a region where variation in forcing is too weak to

provoke a flow, there can be flow due to variation in the forcing elsewhere



(if variation is on a scale less than _’el.). The mechanism is quite simple: the
eastward flowing density current (upper layer) reaches the wall and causes a
downward displacement of the interface which eventually reaches a diffusive
equilibrium. Geostrophic velocities to the north (upper layer) along the
boundary result and damp out on the frictional scale 1. (The Ekman velocity
associated with the geostrophic velocity in the regiore1 -M ¢« y < 0 balances the
incoming flow so that it is zero at the wall). Zona Ekman velocities in the
northward extension which are generated by the geostrophic northward veloci-
ties are exactly balanced by geostrophic zonal velocities due to the variation
in interface height with latitude y (as a result of damping).

Extension of these results to the /& plane is quite simple and involves
expanding the eastern boundary layer width by £ (for ¢ « 1), the familiar
skewing of the circulation to the west. Dampiﬁng to tfle north also occurs over
a scale expanded by €. If we think of the boundary current as a damped Kelvin
wave, the extension gf the layer to the west can perhaps be thought of as
damped nondispersive Rossby waves.

Combination of variation of forcing with both latitude and longitude can
thus give rise to wide eastern boundary currents and narrow western boundary
currents. Forcing in the Norwegian-Greenland Sea i s irregular but the general
trend is for much higher heat flux to the north (Bunker and Worthington, 1976)
and a general cyclonic wind stress pattern. The wide northward flowing eastern
boundary current which is observed in the southern Norwegian Sea (Metcalf,
1960) may be the result of latitudinal variation in cooling and/or wind stress
south of the entrance to the Norwegian Sea, local northward or cyclonic wind

stress, or local cooling. W note that an eastern boundary current at a

particular latitude can be caused only by 1) local forcing which



produces a zonal flow that must be compensated at the boundaries or 2) varia-
tions in forcing to the south of that latitude which produces a damped Kelvin
wave northward of the variation. Therefore, variations in facing or forcing
itself to the north of that latitude have no influence on the eastern boundary

current there.

V. Point Transfer on the £ and p planes

Bottom Water formation may occur Locally and sporadically near the center
of cyclonic gyres where the stratification is weakest due to doming of the pre-
viously formed Bottom Water. It may be possible to model some aspects of the
flow due to Bottom Water formation with the steady model considered so far.

For this purpose, we will simply assume that mass and momentum transfer is a
delta function and look for steady solution. No account is taken of wind
stress, preconditioning, or the spin up or spin down which must undoubtedly
occur with a time dependent process. Modification of the flow by the IE' ef-
fect is considered. In reality, the Greenland gyre may be very strongly influ-

enced by topography since it appears to sit squarely in the Greenland Basin.

G
On the £ plane, the vorticity equation for a point source Q = aTr} with
no angular dependence is
L i |:r érL Ill - I.-. err 'Eb
r Adr ar ET (5.11

which has solutions Ko(r) and I (xr) with the jump condition




Choosing the exponentially decaying solution h = AKo(r), the interface

height and azimuthal and radial velocities for large r are
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This corresponds to outward velocity, clockwise rotation and cyclonic vorticity

in the lower layer and the opposite in the upper layer, as illustrated in
Fig. 4. Cyclonic vorticity in the lower layer arises from point vortex
stretching. at r = 0, The vorticity decreases away from the center as the
water parcels move outward and are squashed. Clockwise rotation in the lower
layer clearly arises from outward motion of water parcels in a counterclock-
wise rotating system dus to angular momentum conservation.

On the [ plane, the flow is skewed to the west as expected. Using the

Longuet Higgins transformation, the interface height is easily seen to be

\n=AK°(JH_’+|'r1|e,m where e =
2¢
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Fig. 4. Interface height h and velocities associated

with Q = d(e) on the £ plane.
r



For large r, this becomes

R et ' LT %
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ILE IIKI = Fﬁ is sufficiently large, we have
I e LRl
Bro

The loci of constant phase r{l-cos 8} are parabolas which open to the west
(Rhines, 1979 lecture notes) and mass transfer is clearly predominantly to the
west.

Thus, on both the f and {3 planes, a point transfer of mass and momentum
generates a steady counterclockwise flow in the upper layer and clockwise flow
in the lower layer with the highest velocities near the transfer point. This
type of flow in the upper layer accords with observations of counterclockwise
flow in the Greenland Sea (Metcalf, 1960). It is, however, not to be forgotten
that the wind stress in this region also yields a counterclockwise gyre,so per-
haps the effects reinforce each other in the production of the gyre and in
Bottom Water formation.

VI,  Summary

Inclusion of a representation of diffusion in the continuity equation
appears to be a useful way of damping the circulation resulting from a steady
transfer of mass and momentum from one layer to another. With this term in-
cluded in the vorticity equation it is possible to meet boundary conditions on
the flow with boundary layers since the interface displacement at the bound-
aries can be an equilibrium between upwelling and diffusion.

The usual steady circulation models on the Ir'i- plane cannot have eastern



117 =

boundary | ayers because there is no way to bal ance rel ative vorticity acces-
sion and changes in planetary vorticity on the eastern boundary. It is for
this reason that boundary |ayers occur only in the west while the bal ance el se-
where is between forcing and changes in planetary vorticity (Sverdrup bal ance),
inthe usual P plane nodels. Inclusion of danping of vortex stretching in
the formof the diffusion termeh in the vorticity equation allows the presence
of western and eastern boundary layers. The western boundary |ayer still has
the sane structure as before, but the interior (eastern) solution includes dif-
fusion as well, as long as ﬁ 1s not too snall.

Application of these results to the actual flowin the Norwegi an- G eenl and
Sea may be somewhat tenuous but two features deserve nention. The first is the
broad northward Norwegi an Qurrent whi ch may possibly be nodelled as the nort h-
ern danped Kel vin wave extension of an eastward density or w nd driven current
in the northern North Atlantic. The second is the countercl ockw se circul ation
in the Geenland Basin which nay be partially driven by the fornmati on of Bot -
tomWater at its center and may be roughly nodell ed by the point transfer of
Topography and wind may play a very large role in determning the actual
circulation, which itself probably undergoes |arge seasonal variation.
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